
Open-Source Processing-in-Memory (PiM) 
Architecture Design through FPGA Emulation:

A Case Study Modeling Sieve
(Open-Source Computer Architecture Research)

OSCAR 2023

Khyati Kiyawat, Sergiu Mosanu, Mircea Stan, Kevin Skadron
University of Virginia



Towards In-memory compute

• Modern workloads are data-intensive

• Energy and performance cost of data movement is huge 

• 2-3 orders of magnitude more as compared 
to compute itself

• Necessitates Processing-in-memory architectures 
to address the ‘memory wall’ issue[1]

[1] Wulf, Wm A., and Sally A. McKee. "Hitting the memory wall: Implications of the obvious." ACM SIGARCH computer architecture news (1995)
2



Proliferation of PiM Architectures
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PiM-related publications are 
increasing exponentially each year

Unavailability of a 
unified modeling and 
evaluation framework 

that is fast and accurate0
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Number of yearly PiM publications
408 in 2019

Source: https://github.com/miglopst/PIM_NDP_papers/blob/master/paper_list.md

Interest surged
in 2010!

https://github.com/miglopst/PIM_NDP_papers/blob/master/paper_list.md


Challenges in Evaluating PiM Architectures
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• Lack of standard PiM hardware

• Researchers today rely on
• Hand calculations,
• In-house simulators,
• Statistical models for power/performance characterizations,
• Modification of existing tools, 
• Chip fabrication, or
• A combination of all

• Hard to reproduce, scale, and explore design space



Survey of various modeling approaches

5

Example Approach Fidelity Speed
Underlying

Memory Model
Design Space
Exploration

Full System
Evaluation

Affordability
Adoptability

Micron
SDRAM
Models

Verilog
Behavioral
Simulation

High Low
Interface, State,

Timing, Dataflow
Flexible,

Behavioral
Compatibility,
Correctness, Ø

Affordable,
Tedious

PIMSim,
MultiPIM

Software
Simulation

Low,
Medium

Low Timing, Ø Flexible
OS/Application,

Power, Performance
Affordable,

Familiar

FASED,
FireSim

FPGA Accelerated
Simulation

Medium Medium Timing, Ø Flexible
OS/Application,

Power, Performance
Cloud price,

Familiar

LiME,
MEG

Approximate
FPGA Emulation

Low,
Limited

High
Interface,

Approx. Timing,
Dataflow

Constrained
OS/Application,

Approximate
Performance

Platform price,
FPGA toolflow

PiMulator
FPGA

Emulation
High High

Interface, State,
Timing, Dataflow

Data layout
Full flexibility

OS/App, Power,
Hardware Model

Cloud price,
FPGA toolflow, LiteX

PiDRAM
DRAM use
violation

Maximum Realtime
Physical
memory

Constrained
OS/App,

Real hardware
Platform price,
FPGA toolflow

Terasys,
FlexRAM

Hardware
tape-out

Maximum Realtime
Physical
memory

Constrained
OS/App,

Real hardware
Prohibitively

Expensive, ASIC & PCB

Ø = insufficient



Open-Source FPGA-based Emulation
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Why FPGA?
✓Reconfigurable
✓Opens more DSE
✓Prototype for tape-out

Why Emulation?
✓Faster 

o 28× speedup than DRAMsim3[1]

✓More accurate and reliable 
o Does not overlook any important hardware logic

[1] S. Li, Z. Yang, D. Reddy, A. Srivastava and B. Jacob, "DRAMsim3: a Cycle-accurate, 
Thermal-Capable DRAM Simulator," in IEEE Computer Architecture Letters.



Separation of concerns

• Target system layer
• Defined by configuration files
• App, Processor, Memory, PiM
• Runtime monitoring

PiMulator framework
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• Host FPGA layer
• Efficient resource utilization

• Logic model layer
• Soft Nax/VexRISC-V CPU model
• Soft LiteDRAM MEMCtrl model
• Soft Memory+PiM model



Memory + PiM model

8

Parameterized SystemVerilog Implementation

• Implements a parameterized DIMM 
channel in SystemVerilog

• Key elements include 
• a memory interface, 
• a command decoder, 
• a data bus, and 
• timing FSMs

• Flexible PiM logic wrapper



PiMulator features
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• Can emulate different memory types including DDRx, LPDDRx, GDDRx, and HBM2.

• Can be integrated with LiteX. LiteX provides several open-source IPs and utilities, 
and it supports various soft-core CPUs and FPGA boards. It also extends migen to 
define 100s of hardware.

• A Data Synchronization Engine is integrated into the model to expand the 
emulated memory’s capacity using the available DRAM resources on the FPGA 
board. 

• FreezeTime[1] technique of architectural virtualization to overcome the resource 
limitations of FPGAs and enable the modeling of large and complex compute and 
memory system

[1] S. Mosanu, et al, “FreezeTime: Towards System Emulation through Architectural Virtualization,”
Proceedings of the 2023 ACM/SIGDA International Symposium on Field Programmable Gate Arrays, Feb. 2023.



Case Study- Modeling Sieve

10

Objective:
To extend PiMulator’s modeling scope to include diverse PiM architectures at
different levels of the DIMM hierarchy

➢ Validate software simulations by modeling it in hardware
➢ Facilitate larger design space exploration across the memory hierarchy



Why bit-serial architecture?
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• More parallelism

• Saves cost of repeating query patterns 
across the columns

• Single-row activation saves energy

• Triple-Row Activation
takes 22% more energy

• Enables Early Terminate Mechanism 
(ETM)

Application: k-mer matching sits on the critical path of many genome analysis pipelines



Sieve Overview (Type 3, Subarray level)
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• Each subarray is partitioned into three
regions:

• Region-1 stores the interleaved
reference and query k-mers

• Region-2 stores the offsets to the
starting address of payloads

• Region-3 stores the actual payloads
such as taxon labels

Data in Region-2/3 is stored in
conventional row-major format

Sieve shows 326x/32x speedup and 74x/48x energy savings over CPU/GPU baseline
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Pattern groups and Matching Implementation

Implemented using parameterized ‘generate’ statements



Matching Column Number
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• Continued till all the rows were matched

• since there was no ETM

• After matching row #0, the segment register with a 1 is copied to reserved 
segment, column finder computes the matching column number, here, 6912. 



ETM saves energy and time
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• For query 1, 2, 3, 4 :

• As they do not match with any reference 

• ETM signal is set after all the segment registers shows mismatch

• After row number 46, 44, 49, 47 respectively in this case



Updating the memory array
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[device_width-1:0] memory_array [cache_rows*column-1:0]

[columns*device_width-1:0] memory_array [cache_rows-1:0]
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Integrating PiM wrapper with DIMM
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DIMM

Chip BankGroup Bank PiMWrapper BankArray

Command 
Decoder

Timing FSM

Mem Sync

• BankArray instantiates a true dual port BRAM
• PiMWrapper instantiates matcher, 

segment_finder, column_finder modules
• The implementation is parameterized and 

scalable (based on the availability of FPGA 
resources)

PiM interfacePiM interfacePiM interfacePiM interface

PiM 
interface



Insights from the functional modeling
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BRAM utilization by memory (0.78%):

• A subarray with 64 rows and 8192 columns uses 64KB BRAM

• BRAM available on Xilinx Virtex-7 FPGA Board is 8MB

• Possible to scale to multiple subarrays and banks ( 4 BG * 4 B * 8 SA )

Opportunities to explore new design space

• 128 columns not needed for reference and query patterns can be used to:

1. Preload two batches of query

2. Introduce ECC/parity bits for the memory

• Overheads of adding a parity checker (XOR) could not be justified for 
Sieve but worth considering for more generic architectures

To be able to visualize end to end integration and analyze power/timing reports



Ongoing work
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• Compile the testbench to interact with memory controller in PiMulator

• Update timing FSM, and Command decoder to support custom PiM commands

• Scale the Sieve implementation for multiple subarrays and banks

• Multiplex queries such that Query A/B -> Bank A/B, or Query C/D-> subarray 
C/D

• Need to work on the addressing mechanism

• Running real-world workloads on the emulated PiM + Host system

• Making the PiMWrapper generic to include other bit-serial architectures



RowClone

• Augment DSync tag table

• support linking multiple memory rows to one local row

• accounting for subarray membership

• Additional ACT (ReActivating) state in FSM

• Data flow between banks
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Strategies to emulate other PiM architectures



LISA

• Neighbor subarray membership = subarray line network
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LISA

Bank 0

Su
b

ar
ra

y 
0

Su
b

ar
ra

y 
1

Su
b

ar
ra

y 
2

Su
b

ar
ra

y 
3

Strategies to emulate other PiM architectures



Ambit

• Model dedicated Ambit rows with LUTRAM

• Model AND, OR, NOT with LUTs

• RowClone → RowClone → Triple Row Activation

• Model timing with 3rd ACT (ReActivating) state
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Ambit
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Open-Source

Software-like flexibility

Hardware-like speed and fidelity

Complex PiM prototyping and evaluation

Design Space Exploration

Summary

https://github.com/hplp/PiMulator

Model your PiM architectures using PiMulator, 
Help us make the platform more robust and versatile

Thank you! Any questions?
khyati@virginia.edu

https://github.com/hplp/PiMulator
mailto:khyati@virginia.edu


Backup Slides
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Memory module structure
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Jia, Gangyong & Li, X. & Yuan, Y. & Wan, J. & Jiang, Congfeng & Dai, Dong. (2014). PseudoNUMA for reducing memory 
interference in multi-core systems. 46. 39-46.
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