
Open-Source Processing-in-Memory (PiM)
Architecture Design through FPGA Emulation:

A Case Study Modeling Sieve
(Open-Source Computer Architecture Research)

OSCAR 2023

Khyati Kiyawat, Sergiu Mosanu, Mircea Stan, Kevin Skadron
University of Virginia

Towards In-memory compute

• Modern workloads are data-intensive

• Energy and performance cost of data movement is huge

• 2-3 orders of magnitude more as compared
to compute itself

• Necessitates Processing-in-memory architectures
to address the ‘memory wall’ issue[1]

[1] Wulf, Wm A., and Sally A. McKee. "Hitting the memory wall: Implications of the obvious." ACM SIGARCH computer architecture news (1995)
2

Proliferation of PiM Architectures

3

PiM-related publications are
increasing exponentially each year

Unavailability of a
unified modeling and
evaluation framework

that is fast and accurate0

100

200

300

400

500

1965 1975 1985 1995 2005 2015 2025#
o

f
P

iM
 p

u
b

lic
at

io
n

s

Year

Number of yearly PiM publications
408 in 2019

Source: https://github.com/miglopst/PIM_NDP_papers/blob/master/paper_list.md

Interest surged
in 2010!

https://github.com/miglopst/PIM_NDP_papers/blob/master/paper_list.md

Challenges in Evaluating PiM Architectures

4

• Lack of standard PiM hardware

• Researchers today rely on
• Hand calculations,
• In-house simulators,
• Statistical models for power/performance characterizations,
• Modification of existing tools,
• Chip fabrication, or
• A combination of all

• Hard to reproduce, scale, and explore design space

Survey of various modeling approaches

5

Example Approach Fidelity Speed
Underlying

Memory Model
Design Space
Exploration

Full System
Evaluation

Affordability
Adoptability

Micron
SDRAM
Models

Verilog
Behavioral
Simulation

High Low
Interface, State,

Timing, Dataflow
Flexible,

Behavioral
Compatibility,
Correctness, Ø

Affordable,
Tedious

PIMSim,
MultiPIM

Software
Simulation

Low,
Medium

Low Timing, Ø Flexible
OS/Application,

Power, Performance
Affordable,

Familiar

FASED,
FireSim

FPGA Accelerated
Simulation

Medium Medium Timing, Ø Flexible
OS/Application,

Power, Performance
Cloud price,

Familiar

LiME,
MEG

Approximate
FPGA Emulation

Low,
Limited

High
Interface,

Approx. Timing,
Dataflow

Constrained
OS/Application,

Approximate
Performance

Platform price,
FPGA toolflow

PiMulator
FPGA

Emulation
High High

Interface, State,
Timing, Dataflow

Data layout
Full flexibility

OS/App, Power,
Hardware Model

Cloud price,
FPGA toolflow, LiteX

PiDRAM
DRAM use
violation

Maximum Realtime
Physical
memory

Constrained
OS/App,

Real hardware
Platform price,
FPGA toolflow

Terasys,
FlexRAM

Hardware
tape-out

Maximum Realtime
Physical
memory

Constrained
OS/App,

Real hardware
Prohibitively

Expensive, ASIC & PCB

Ø = insufficient

Open-Source FPGA-based Emulation

6

Why FPGA?
✓Reconfigurable
✓Opens more DSE
✓Prototype for tape-out

Why Emulation?
✓Faster

o 28× speedup than DRAMsim3[1]

✓More accurate and reliable
o Does not overlook any important hardware logic

[1] S. Li, Z. Yang, D. Reddy, A. Srivastava and B. Jacob, "DRAMsim3: a Cycle-accurate,
Thermal-Capable DRAM Simulator," in IEEE Computer Architecture Letters.

Separation of concerns

• Target system layer
• Defined by configuration files
• App, Processor, Memory, PiM
• Runtime monitoring

PiMulator framework

7

• Host FPGA layer
• Efficient resource utilization

• Logic model layer
• Soft Nax/VexRISC-V CPU model
• Soft LiteDRAM MEMCtrl model
• Soft Memory+PiM model

Memory + PiM model

8

Parameterized SystemVerilog Implementation

• Implements a parameterized DIMM
channel in SystemVerilog

• Key elements include
• a memory interface,
• a command decoder,
• a data bus, and
• timing FSMs

• Flexible PiM logic wrapper

PiMulator features

9

• Can emulate different memory types including DDRx, LPDDRx, GDDRx, and HBM2.

• Can be integrated with LiteX. LiteX provides several open-source IPs and utilities,
and it supports various soft-core CPUs and FPGA boards. It also extends migen to
define 100s of hardware.

• A Data Synchronization Engine is integrated into the model to expand the
emulated memory’s capacity using the available DRAM resources on the FPGA
board.

• FreezeTime[1] technique of architectural virtualization to overcome the resource
limitations of FPGAs and enable the modeling of large and complex compute and
memory system

[1] S. Mosanu, et al, “FreezeTime: Towards System Emulation through Architectural Virtualization,”
Proceedings of the 2023 ACM/SIGDA International Symposium on Field Programmable Gate Arrays, Feb. 2023.

Case Study- Modeling Sieve

10

Objective:
To extend PiMulator’s modeling scope to include diverse PiM architectures at
different levels of the DIMM hierarchy

➢ Validate software simulations by modeling it in hardware
➢ Facilitate larger design space exploration across the memory hierarchy

Why bit-serial architecture?

11

• More parallelism

• Saves cost of repeating query patterns
across the columns

• Single-row activation saves energy

• Triple-Row Activation
takes 22% more energy

• Enables Early Terminate Mechanism
(ETM)

Application: k-mer matching sits on the critical path of many genome analysis pipelines

Sieve Overview (Type 3, Subarray level)

12

• Each subarray is partitioned into three
regions:

• Region-1 stores the interleaved
reference and query k-mers

• Region-2 stores the offsets to the
starting address of payloads

• Region-3 stores the actual payloads
such as taxon labels

Data in Region-2/3 is stored in
conventional row-major format

Sieve shows 326x/32x speedup and 74x/48x energy savings over CPU/GPU baseline

13

Pattern groups and Matching Implementation

Implemented using parameterized ‘generate’ statements

Matching Column Number

14

• Continued till all the rows were matched

• since there was no ETM

• After matching row #0, the segment register with a 1 is copied to reserved
segment, column finder computes the matching column number, here, 6912.

ETM saves energy and time

15

• For query 1, 2, 3, 4 :

• As they do not match with any reference

• ETM signal is set after all the segment registers shows mismatch

• After row number 46, 44, 49, 47 respectively in this case

Updating the memory array

16

[device_width-1:0] memory_array [cache_rows*column-1:0]

[columns*device_width-1:0] memory_array [cache_rows-1:0]

{row, column} {row}

device_width

ca
ch

e_
ro

w
s*

co
lu

m
n

s

columns*device_width

ca
ch

e_
ro

w
s

Addressing

Integrating PiM wrapper with DIMM

17

te
st

b
e

n
ch

DIMM

Chip BankGroup Bank PiMWrapper BankArray

Command
Decoder

Timing FSM

Mem Sync

• BankArray instantiates a true dual port BRAM
• PiMWrapper instantiates matcher,

segment_finder, column_finder modules
• The implementation is parameterized and

scalable (based on the availability of FPGA
resources)

PiM interfacePiM interfacePiM interfacePiM interface

PiM
interface

Insights from the functional modeling

18

BRAM utilization by memory (0.78%):

• A subarray with 64 rows and 8192 columns uses 64KB BRAM

• BRAM available on Xilinx Virtex-7 FPGA Board is 8MB

• Possible to scale to multiple subarrays and banks (4 BG * 4 B * 8 SA)

Opportunities to explore new design space

• 128 columns not needed for reference and query patterns can be used to:

1. Preload two batches of query

2. Introduce ECC/parity bits for the memory

• Overheads of adding a parity checker (XOR) could not be justified for
Sieve but worth considering for more generic architectures

To be able to visualize end to end integration and analyze power/timing reports

Ongoing work

19

• Compile the testbench to interact with memory controller in PiMulator

• Update timing FSM, and Command decoder to support custom PiM commands

• Scale the Sieve implementation for multiple subarrays and banks

• Multiplex queries such that Query A/B -> Bank A/B, or Query C/D-> subarray
C/D

• Need to work on the addressing mechanism

• Running real-world workloads on the emulated PiM + Host system

• Making the PiMWrapper generic to include other bit-serial architectures

RowClone

• Augment DSync tag table

• support linking multiple memory rows to one local row

• accounting for subarray membership

• Additional ACT (ReActivating) state in FSM

• Data flow between banks

20

Bank 0

Su
b

ar
ra

y
0

Su
b

ar
ra

y
1

Su
b

ar
ra

y
2

Su
b

ar
ra

y
3

RowClone

Strategies to emulate other PiM architectures

LISA

• Neighbor subarray membership = subarray line network

21

LISA

Bank 0

Su
b

ar
ra

y
0

Su
b

ar
ra

y
1

Su
b

ar
ra

y
2

Su
b

ar
ra

y
3

Strategies to emulate other PiM architectures

Ambit

• Model dedicated Ambit rows with LUTRAM

• Model AND, OR, NOT with LUTs

• RowClone → RowClone → Triple Row Activation

• Model timing with 3rd ACT (ReActivating) state

22

Ambit

Bank 0

Su
b

ar
ra

y
0

Su
b

ar
ra

y
1

Su
b

ar
ra

y
2

Su
b

ar
ra

y
3

Strategies to emulate other PiM architectures

23

Open-Source

Software-like flexibility

Hardware-like speed and fidelity

Complex PiM prototyping and evaluation

Design Space Exploration

Summary

https://github.com/hplp/PiMulator

Model your PiM architectures using PiMulator,
Help us make the platform more robust and versatile

Thank you! Any questions?
khyati@virginia.edu

https://github.com/hplp/PiMulator
mailto:khyati@virginia.edu

Backup Slides

24

Memory module structure

25

Jia, Gangyong & Li, X. & Yuan, Y. & Wan, J. & Jiang, Congfeng & Dai, Dong. (2014). PseudoNUMA for reducing memory
interference in multi-core systems. 46. 39-46.

	Slide 1: Open-Source Processing-in-Memory (PiM) Architecture Design through FPGA Emulation: A Case Study Modeling Sieve
	Slide 2: Towards In-memory compute
	Slide 3: Proliferation of PiM Architectures
	Slide 4: Challenges in Evaluating PiM Architectures
	Slide 5: Survey of various modeling approaches
	Slide 6: Open-Source FPGA-based Emulation
	Slide 7: PiMulator framework
	Slide 8: Memory + PiM model
	Slide 9: PiMulator features
	Slide 10: Case Study- Modeling Sieve
	Slide 11: Why bit-serial architecture?
	Slide 12: Sieve Overview (Type 3, Subarray level)
	Slide 13
	Slide 14: Matching Column Number
	Slide 15: ETM saves energy and time
	Slide 16: Updating the memory array
	Slide 17: Integrating PiM wrapper with DIMM
	Slide 18: Insights from the functional modeling
	Slide 19: Ongoing work
	Slide 20
	Slide 21
	Slide 22
	Slide 23: Summary
	Slide 24: Backup Slides
	Slide 25: Memory module structure

