Open-Source Processing-in-Memory (PiM)
Architecture Design through FPGA Emulation:
A Case Study Modeling Sieve

(Open-Source Computer Architecture Research)
OSCAR 2023

Khyati Kiyawat, Sergiu Mosanu, Mircea Stan, Kevin Skadron
University of Virginia

N
fiil P RSTLY

I

A
il “Nfren

>3

Towards In-memory compute

* Modern workloads are data-intensive

SBETKE

CTERREEm

* Energy and performance cost of data movement is huge
e 2-3 orders of magnitude more as compared 10000 -

to compute itself i

g 160 Processor
* Necessitates Processing-in-memory architectures & 10
to address the ‘memory wall’ issue[1] "

1985 1990 1995 2000 2005 2010

Source: Hennessy & Patterson, Computer Architecture: A Quantitative Approach, 4" ed.

[1] Wulf, Wm A., and Sally A. McKee. "Hitting the memory wall: Implications of the obvious." ACM SIGARCH computer architecture news (1995)

A
il “Nfren

>3

Proliferation of PiM Architectures

500

= NN W D
o O O O
o O O O O

of PiM publications

1965

Number of yearly PiM publications

Interest surged
in 2010!

/

1975 1985 1995 2005 2015

Year

408 in 2019

2025

Source: https://github.com/miglopst/PIM NDP papers/blob/master/paper list.md

PiM-related publications are
increasing exponentially each year

Unavailability of a
unified modeling and
evaluation framework

that is fast and accurate

https://github.com/miglopst/PIM_NDP_papers/blob/master/paper_list.md

A
filli NSRS

Challenges in Evaluating PiM Architectures

e Lack of standard PiM hardware

e Researchers today rely on
e Hand calculations,
* |In-house simulators,
« Statistical models for power/performance characterizations,
 Modification of existing tools,
e Chip fabrication, or
A combination of all

 Hard to reproduce, scale, and explore design space

TY
IA

A
il NARGIA

Survey of various modeling approaches
s Underlying Design Space Full System Affordability
Example Approach Fidelit Speed . . -

p PP ¥ P Memory Model | Exploration Evaluation Adoptability
Micron Verll_o g , Interface, State, Flexible, Compatibility, Affordable,
SDRAM Behavioral High Low _ . .

. . Timing, Dataflow Behavioral Correctness, @ Tedious
Models Simulation
PIMSim, Software Low, Low Timing, @ : Flexible OS/Application, Affordable, :
MultiPIM Simulation Medium & : Power, Performance Familiar :
I |
F.ASE,D’ FPGA_« Accel.erated Medium | Medium Timing, @ ' Elexible OS/Application, Cloud price, |
FireSim Simulation I Power, Performance Familiar i
___________________ e e e o
LIME, Approximate Low, High A I:Zir?i(;:n Constrained O,i/A?gricrzﬁtoen’ Platform price,
MEG FPGA Emulation | Limited € PRIOX. & PP . FPGA toolflow
Dataflow Performance
v
Interface, State .
. FPGA . . . ’ ’ . OS/App, Power, Cloud price,
PiMulator Emulation High High Timing, Dataflow | Full flexibility Hardware Model FPGA toolflow, LiteX
4 Data layout
S 0 S A —
) DRAM use I .) Physical I . OS/App, Platform price,
PIDRAM violation : Maximum | Realtime memory : Constrained Real hardware FPGA toolflow
I I
Terasys, Hardware I . : Physical I . OS/App, Prohibitively
FlexRAM tape-out :MaX|mum ACEIIG memory : Constrained Real hardware Expensive, ASIC & PCB

@ = insufficient ’

A
filli NSRS

>3

Open-Source FPGA-based Emulation

PiMulator: a fast and flexible processing-in-memory emulation

platform
Authors: Sergiu Mosanu, Mohammad Nazmus Sakib, Tommy Tracy, Ersin Cukurtas, Alif Ahmed,
Preslav lvanov, Samira Khan, q Kevin Skadron, Mircea Stan Authors Info & Claims

DATE '22: Proceedings of the 2022 Conference & Exhibition on Design, Automation & Test in Europe « March 2022 »
Pages 14731478

Why FPGA? Why Emulation?

v Reconfigurable v'Faster

v Opens more DSE o 28X speedup than DRAMsim3[1]
v’ Prototype for tape-out v"More accurate and reliable

o Does not overlook any important hardware logic

[1] S. Li, Z. Yang, D. Reddy, A. Srivastava and B. Jacob, "DRAMsim3: a Cycle-accurate,
Thermal-Capable DRAM Simulator," in IEEE Computer Architecture Letters.

&= UNIVERSITY
IA

L IRGIN
]
PiMulator framework
Separation of concerns N T " Soft Memory Controler
it L4, LrreDRFMT
: Orkioa rocessor IM+Memory | SOft SOC AT .-_.-rgﬁ
-\)N
 Target system layer » — ! /| iE
» Defined by configuration files ! |eea [awe]) (‘= oone | | H Memry + Pil
- App, Processor, Memory,PiM 1 ————— J 5
 Runtime monitoring
Data Lfyout using BRAM sz Soft PHY
 Host FPGA layer
* Efficient resource utilization g JL
e Logic model layer - =
+ Soft Nax/VexRISC-V CPU model I S
* Soft LiteDRAM MEMCtrl model - @
e Soft Memory+PiM model I
K——————— Board Memory

Memory + PiM model

Implements a parameterized DIMM

channel in SystemVerilog

Key elements include

a memory interface,
a command decoder,
a data bus, and
timing FSMs

Flexible PiM logic wrapper

A
il “Nfren

>3

Data Layout using BRAM
p=—— Soft PHY
™irin M
I -
W ET - addressing, cirls
E EG ||||| tdrrrna
SR i
] dmlme oo E -(:::} Command Decoder
o= o
Ll | M % JL
e[l g E J
=S R R M
lilggzmiul B o £ [Faw, RRD :
ZHiElEn] En o =|| FSM |acT
= o 'E Bank
sl [WTR, cCD - F3M
—nfonn = £|["TR CCOLwriro
-E IIIII -E IIIII —
11a]&i] g o @
™ (=]
g da| oo AN
g .-j,ch::::: E::::: iL stall
g_ I:m IIIIIIIII II II
= ' — Data Sync FSM
— i [IRERE
T
VR
I T e
SIESEE - - Y - Board Memory
R LT gt
5 -

Parameterized SystemVerilog Implementation

UNIVERSITY
JVIRGINIA

PiMulator features

e Can emulate different memory types including DDRx, LPDDRx, GDDRx, and HBM2.

* Can be integrated with LiteX. LiteX provides several open-source IPs and utilities,
and it supports various soft-core CPUs and FPGA boards. It also extends migen to
define 100s of hardware.

* A Data Synchronization Engine is integrated into the model to expand the

emulated memory’s capacity using the available DRAM resources on the FPGA
board.

* FreezeTime[1] technique of architectural virtualization to overcome the resource
limitations of FPGAs and enable the modeling of large and complex compute and
memory system

[1] S. Mosanu, et al, “FreezeTime: Towards System Emulation through Architectural Virtualization,”
Proceedings of the 2023 ACM/SIGDA International Symposium on Field Programmable Gate Arrays, Feb. 2023.

A
il NARGIA

Case Study- Modeling Sieve

2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA)

Sieve: Scalable In-situ DRAM-based Accelerator
Designs for Massively Parallel k-mer Matching

Lingx1 Wu Rasool Sharifi Marzieh Lenjani Kevin Skadron Ashish Venkat
University of Virginia University of Virginia University of Virginia University of Virginia University of Virginia
Iw2ef@virginia.edu as3mx @virginia.edu ml2au@virginia.edu skadron@virginia.edu venkat@virginia.edu
Objective:

To extend PiMulator’s modeling scope to include diverse PiM architectures at
different levels of the DIMM hierarchy

» Validate software simulations by modeling it in hardware

» Facilitate larger design space exploration across the memory hierarchy

10

A
filli NSRS

>3

Why bit-serial architecture?

Horizontal

Vertical

Triple-
Row
Activation

AND
Mismatch

AND
Mismatch

Mismatch

8tRAS + 4tRP ~ 340 ns

S| AATCCGATCG | AATCGGATAA | ATTCCGATCC | Rpgy
S| ATTCCGATCG | ATTCCGATCG | ATTCCGATCG | Rayery
~» 0000000...0000 | 0000000...0000 | 0000000...0000 | Rgyyy
AND

RHesuit

QRase @ =i

Single-Row

Activation

A

e A

CG

AL

A

"

T

PP

A

G

S

A

A

A

r———

c/a

—~

1tRAS + 1tRP ~ 50ns

Row Buffer: _““7; x

More parallelism

Saves cost of repeating query patterns
across the columns
Single-row activation saves energy
* Triple-Row Activation
takes 22% more energy

Enables Early Terminate Mechanism
(ETM)

Application: k-mer matching sits on the critical path of many genome analysis pipelines

11

A
filli N ERSTTY

Sieve Overview (Type 3, Subarray level)

[}
WL511

S- %8.58 LER
. mE@ @@ @@ oag
> weo+—-— c| ~
|8 L, Pattern Al §
© @ drod*vl! |5
s Q
12] 2 -:Local RB w2+ | al &
Q', &colFH'ld Lsz ------------------ c
A
./l Subarray 1 ()
T'I L] \\ 1 L64
WL65 ‘:
ng4 SEEEER 4 EEEEss 4 mEsEes ﬁn
o
L95
: 196 -
(| weoz §
\ e Tk * 8 o
‘wLs1o g

* Each subarray is partitioned into three
regions:

* Region-1 stores the interleaved
reference and query k-mers

* Region-2 stores the offsets to the
starting address of payloads

* Region-3 stores the actual payloads
such as taxon labels

Data in Region-2/3 is stored in
conventional row-major format

Sieve shows 326x/32x speedup and 74x/48x energy savings over CPU/GPU baseline

12

Pattern groups and Matching Implementation

64 rows

Prefetch size of chip = 8 bytes*

Number of matchers a query can
reach in one DRAM row cycle = 256*

8192 mod 576*

PG1 256 references 64 queries 256 references PG14 256 references 64 queries 256 references 128 columns
A 1 I | 1 I |
L | T 1 [I [i |
0 1 254 | 255 | 256 319 | 320 | 31 574 | 575 7488 | 7489 F7A2 | 7743 | 7744 - 7807 | 7808 | 7801 8062 | 8063 | 8064 - 8191
M 1 Matcher per Reference
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 Segments of latches
J n . L J L J
‘ .
] i
i u
' '
)]
." ".
0 ;' 1 : o 0 Segment Registers (SR)
index=10 ' index =1 H index =2 index = 3
' 4
[} i
| |

ETM =1 if all SRs are 0

Column Finder

1

Reserved Segment (RS) Register to

store index

+ Position_of set bit_in_RS

+ Segment_size = 2" (multiplication can be implemented using shifter)

= Position_of_set_bit_in_RS using Shift and Count logic

Implemented using parameterized ‘generate’ statements

Current assumptions:

» Data is already stored in the subarray in column-major format

« Considered one subarray containing only Region 1

* These numbers are for DDR3_micron_32M_8B x4 sg125

13

UNIVERSITY
JVIRGINIA

Matching Column Number

e Continued till all the rows were matched
e since there was no ETM

* After matching row #0, the segment register with a 1 is copied to reserved
segment, column finder computes the matching column number, here, 6912.

> W query_column[12:0] |

Name Value 1,160.600 ns 1,200.000 ns 1,3d0.0600 ns 1,

> W row_address[6:0] 1312117109 (8 (7 (6 5)4 321}

bl ' match_col[12:0]

. clk
I'shn
¢ ETM

UNIVERSITY
JVIRGINIA

ETM saves energy and time

* Forquery1,2,3,4:
* As they do not match with any reference
 ETM signal is set after all the segment registers shows mismatch
* After row number 46, 44, 49, 47 respectively in this case

1,560.000 ns
» M query_column[12:0] 1
Vrow_address[G:O] P : P T ::' P : PR S m—————— : P
> W match_col[12:0] — YV VVVVVV VMWV VYV VM VWV VYV VUV VY VL

é clk e T EREQ

4 rsn |

| 1] | Il 1

Updating

[device_width-1:0] memory_array [cache _rows*column-1:0]

cache_rows*columns

device_width

A
il NARGIA

the memory array

{row, column} {row}

N
>
(@N
o
®
w
@,
-)
(0]0]

N4

cache_rows

columns*device_width

[columns*device width-1:0] memory array [cache_rows-1:0]

16

Z= [UNIVERSITY
AllllE "7V IRGINIA

Integrating PiM wrapper with DIMM

testbench

PiM
interface

—_ DIMM —

PiM interface
Chip

Command
Decoder

Timing FSM

Mem Sync

PiM interface PiM interface PiM interface

— BankGroup —— Bank — PiMWrapper —— BankArray

* BankArray instantiates a true dual port BRAM

 PiMWrapper instantiates matcher,
segment_finder, column_finder modules

 The implementation is parameterized and
scalable (based on the availability of FPGA
resources)

17

Insights from the functional modeling

BRAM utilization by memory (0.78%):

* Asubarray with 64 rows and 8192 columns uses 64KB BRAM

* BRAM available on Xilinx Virtex-7 FPGA Board is 8MB

* Possible to scale to multiple subarrays and banks (4 BG *4 B * 8 SA)
Opportunities to explore new design space

* 128 columns not needed for reference and query patterns can be used to:
1. Preload two batches of query
2. Introduce ECC/parity bits for the memory
* Overheads of adding a parity checker (XOR) could not be justified for
Sieve but worth considering for more generic architectures

To be able to visualize end to end integration and analyze power/timing reports

18

= [UNIVERSITY
JVIRGINIA

Ongoing work

* Compile the testbench to interact with memory controller in PiMulator

Update timing FSM, and Command decoder to support custom PiM commands

Scale the Sieve implementation for multiple subarrays and banks

e Multiplex queries such that Query A/B -> Bank A/B, or Query C/D-> subarray
C/D

* Need to work on the addressing mechanism

Running real-world workloads on the emulated PiM + Host system

Making the PiMWrapper generic to include other bit-serial architectures

19

= UNIVERSITY
lIIIIIE IRGINIA =

Strategies to emulate other PiM architectures

RowClone
RowClone Bank O
* Augment DSync tag table ceseseses

Subarray 0

e support linking multiple memory rows to one local row
* accounting for subarray membership

» Additional ACT (ReActivating) state in FSM

* Data flow between banks

Subarray 1

Subarray 2

Subarray 3

20

= UNIVERSITY
!IIIII! IRGINIA =

Strategies to emulate other PiM architectures

|

LISA
LISA Bank O
* Neighbor subarray membership = subarray line network EEEREEEEE

Subarray 0

Subarray 1

Subarray 2

Subarray 3

21

A
il "R fRen, S

Strategies to emulate other PiM architectures

Ambit Bank 0
» Model dedicated Ambit rows with LUTRAM
* Model AND, OR, NOT with LUTs
* RowClone - RowClone = Triple Row Activation
* Model timing with 37 ACT (ReActivating) state

Subarray 1

Subarray 2

Subarray 3

22

= UNIVERSITY
IA

7VIRGIN

Summary

Open-Source

v

Software-like flexibility

&) Hardware-like speed and fidelity
https://github.com/hplp/PiMulator

Model your PiM architectures using PiMulator, o Complex PiM prototyping and evaluation
Help us make the platform more robust and versatile

4’0’ Design Space Exploration

Thank you! Any questions?
= khyati@virginia.edu

23

https://github.com/hplp/PiMulator
mailto:khyati@virginia.edu

Backup Slides

A
il "R PRaINT

24

Memory module structure

DIMMs
Channel 1 DRAM Chip Arrays
R — Banks -
Bus| (PLL|
CPU | MC : T T]:r Tt T T é
128 O 5
Channel 2 E.:mk Mux 2
/.,, [Registers & VO |jDLL]
64 L [Sense Amps
= B T i
e Yme fBus foinmm DRAM %
Cell

Jia, Gangyong & Li, X. & Yuan, Y. & Wan, J. & Jiang, Congfeng & Dai, Dong. (2014). PseudoNUMA for reducing memory
interference in multi-core systems. 46. 39-46.

	Slide 1: Open-Source Processing-in-Memory (PiM) Architecture Design through FPGA Emulation: A Case Study Modeling Sieve
	Slide 2: Towards In-memory compute
	Slide 3: Proliferation of PiM Architectures
	Slide 4: Challenges in Evaluating PiM Architectures
	Slide 5: Survey of various modeling approaches
	Slide 6: Open-Source FPGA-based Emulation
	Slide 7: PiMulator framework
	Slide 8: Memory + PiM model
	Slide 9: PiMulator features
	Slide 10: Case Study- Modeling Sieve
	Slide 11: Why bit-serial architecture?
	Slide 12: Sieve Overview (Type 3, Subarray level)
	Slide 13
	Slide 14: Matching Column Number
	Slide 15: ETM saves energy and time
	Slide 16: Updating the memory array
	Slide 17: Integrating PiM wrapper with DIMM
	Slide 18: Insights from the functional modeling
	Slide 19: Ongoing work
	Slide 20
	Slide 21
	Slide 22
	Slide 23: Summary
	Slide 24: Backup Slides
	Slide 25: Memory module structure

