Programming Management Unit: Open-Source Core for Secure FPGA Bitstream Configuration

Allen Boston

R. Gauchi, Pierre-Emmanuel Gaillardon Department of Electrical and Computer Engineering – University of Utah

Open-Source Computer Architecture Research 2023 06/18/2023

Motivation

• FPGAs are essential to modern high-performance systems

Wired and wireless communications

Audio and video broadcasting

Data center

Motivation

FPGAs are essential to modern high-performance systems

Wired and wireless communications

Audio and video broadcasting

Data center

Prime target for adversaries

[Author's Own]

University of Utah | A. Boston | 2

• Configurable architectures are generic in nature

Configurable architectures are generic in nature

• FPGAs are programmed with user IP

- Configurable architectures are generic in nature
- FPGAs are programmed with user IP

Essential to essential to safeguard the configuration data

THE WINERSITY OF USE

FPGA Configuration Protocol

- State-of-the-art FPGAs leverage SRAM-based configuration
 - High speed, low power, scalable

- State-of-the-art FPGAs leverage SRAM-based configuration
 - High speed, low power, scalable
- Flash is a non-volatile alternative

- State-of-the-art FPGAs leverage SRAM-based configuration
 - High speed, low power, scalable
- Flash is a non-volatile alternative
- Parallel and serial data acquisition

THUR WERSTY OF UNIT

FPGA Configuration Protocol

- State-of-the-art FPGAs leverage SRAM-based configuration
 - High speed, low power, scalable
- Flash is a non-volatile alternative
- Parallel and serial data acquisition
- PMU targets a OpenFPGA serial configuration-chain protocol

THE WAY OF ENGINE

Programming Management Unit

- Problem:
 - FPGA bitstream configuration is complex
 - Impossible to customize security IP in commercial FPGAs.
 - Open-source landscape lacks security aware FPGA configuration circuitry

Programming Management Unit

- Problem:
 - FPGA bitstream configuration is complex
 - Impossible to customize security IP in commercial FPGAs.
 - Open-source landscape lacks security aware FPGA configuration circuitry

• Proposal:

- First open-source IP core specifically dedicated to FPGA configuration
- Customizable framework dedicated to secure data movement from EDA bitstream generation to FPGA core configuration circuitry.

University of Utah | A. Boston | 5

 PMU bitstream security measures constrained to "at-rest" and "loading" stages of configuration procedure

 PMU bitstream security measures constrained to "at-rest" and "loading" stages of configuration procedure

 PMU bitstream security measures constrained to "at-rest" and "loading" stages of configuration procedure

 PMU bitstream security measures constrained to "at-rest" and "loading" stages of configuration procedure

Key storage falls outside the scope of work for this project.

OF ENG

OF ENG

Vulnerable Communication Channel

F ENG

Vulnerable Communication Channel

University of Utah | A. Boston | 7

FENG

Vulnerable Communication Channel

University of Utah | A. Boston | 7

Hardware

 Leverage the open-source ecosystem by utilizing preexisting IPs

- Leverage the open-source ecosystem by utilizing preexisting IPs
- 10x10 OpenFPGA fabric
 - OpenFPGA Github: https://github.com/lnis-uofu/OpenFPGA

- Leverage the open-source ecosystem by utilizing preexisting IPs
- 10x10 OpenFPGA fabric
 - OpenFPGA Github: <u>https://github.com/lnis-uofu/OpenFPGA</u>
- Joint-Action Test Group
 - JTAG Github: <u>https://github.com/freecores/jtag</u>

- Leverage the open-source ecosystem by utilizing preexisting IPs
- 10x10 OpenFPGA fabric
 - OpenFPGA Github: <u>https://github.com/Inis-uofu/OpenFPGA</u>
- Joint-Action Test Group
 - JTAG Github: <u>https://github.com/freecores/jtag</u>
- Advanced Encryption Standard
 - AES Github: <u>https://github.com/secworks/aes</u>

- Leverage the open-source ecosystem by utilizing preexisting IPs
- 10x10 OpenFPGA fabric
 - OpenFPGA Github: <u>https://github.com/lnis-uofu/OpenFPGA</u>
- Joint-Action Test Group
 - JTAG Github: <u>https://github.com/freecores/jtag</u>
- Advanced Encryption Standard
 - AES Github: https://github.com/secworks/aes
- Secure Hash Algorithm
 - SHA Github: <u>https://github.com/secworks/sha256</u>

Bitstream confidentiality

© UofU - LNIS 2022 A

- Bitstream confidentiality
 - Advanced Encryption Standard (AES)

- Bitstream confidentiality
 - Advanced Encryption Standard (AES)

Authentication and Data Integrity

- Bitstream confidentiality
 - Advanced Encryption Standard (AES)

- Authentication and Data Integrity
 - Secure Hash Algorithm (SHA)

FENG

University of Utah | A. Boston | 10

 Designed to be readily adaptable

University of Utah | A. Boston | 10

- Designed to be readily adaptable
- Communication Protocol
 - SPI, I2C, USB

University of Utah | A. Boston | 10

- Designed to be readily adaptable
- Communication Protocol
 SPI, I2C, USB
- Cryptography
 - RSA, ECC, HMAC, DES

University of Utah | A. Boston | 10

- Designed to be readily adaptable
- Communication Protocol
 SPI, I2C, USB

Cryptography

- RSA, ECC, HMAC, DES
- Configuration Protocol
 - SRAM, Flash, Active Serial

- Designed to be readily adaptable
- Communication Protocol
 SPI, I2C, USB
- Cryptography
 - RSA, ECC, HMAC, DES
 - Configuration Protocol
 - SRAM, Flash, Active Serial

Key Storage

 OTP Memory, PUF, Secure Element

University of Utah | A. Boston | 10

PMU Core Operation

OF ENG

PMU Core Operation

OF ENG

University of Utah | A. Boston | 11

PMU Core Operation

OF ENG

OF ENGIA

Ľ

	5-bits		K-bits		32-bits	12-bits
JTAG TDI	tdi footer	SHA(AES n + 1 + AES n)	AES(bitstream block n + 1)	AES(bitstream block n)	PMU Header	tdi header
JTAG TMS	tms footer		'0' * K + '0'	* 32		tms header
	(MSB)					(LSB)

	5-bits		K-bits		32-bits	12-bits
JTAG TDI	tdi footer	SHA(AES n + 1 + AES n)	AES(bitstream block n + 1)	AES(bitstream block n)	PMU Header	tdi header
JTAG TMS	tms footer		'0' * K + '0'	* 32		tms header
	(MSB)					(LSB)

Consider 1000-bit bitstream

• SHA evaluation every 500-bits

University of Utah | A. Boston | 12

OF ENGIN

Ľ

	5-bits		K-bits		32-bits	12-bits	
JTAG TDI	tdi footer	SHA(AES n + 1 + AES n)	AES(bitstream block n + 1)	AES(bitstream block n)	PMU Header	tdi header	
JTAG TMS	tms footer		'0' * K + '0'	* 32		tms header	
	(MSB)					(LSB)	
 Consider 1000-bit bitstream SHA evaluation every 500-bits 							
36% Encoding Overhead Olistream							
33	3%		JTAG				
	PMU Header						
2%	%	64%	😑 SHA				

University of Utah | A. Boston | 12

OF ENGI

Ľ

	5-bits		K-bits		32-bits	12-bits	
JTAG TDI	tdi footer	SHA(AES n + 1 + AES n)	AES(bitstream block n + 1)	AES(bitstream block n)	PMU Header	tdi header	
JTAG TMS	tms footer		'0' * K + '0'	* 32		tms header	
	(MSB)					(LSB)	
 Consider 1000-bit bitstream SHA evaluation every 500-bits SHA evaluation every 250-bits SHA evaluation every 250-bits 							
36% En 33	coding	Overhead 64%	 Bitstream JTAG PMU Hea SHA 	der 49	%	48%	

University of Utah | A. Boston | 12

2%

OF ENG

Ľ

	5-bits		K-bits		32-bits	12-bits	
JTAG TDI	tdi footer	SHA(AES n + 1 + AES n)	AES(bitstream block n + 1)	AES(bitstream block n)	PMU Header	tdi header	
JTAG TMS	tms footer		'0' * K + '0' * 32				
	(MSB)					(LSB)	
 Consider 1000-bit bitstream SHA evaluation every 500-bits SHA evaluation every 250-bits SHA evaluation every 250-bits 							
36% Encoding Overhead • Bitstream 51% Encoding Overhead							
33	3%		JTAGPMU Heat	der 49	%	48%	
2%	1%	64%	e sha		1% 2%		
					University of Uta	ah A. Boston 12	

Silicon Integration to Caravel SoC

University of Utah | A. Boston | 13

University of Utah | A. Boston | 13

Silicon Integration to Caravel SoC

Silicon Integration to Caravel SoC

Summary

First open-source core specifically dedicated to FPGA configuration

Flexible HW/SW template framework

Enables secure and accurate FPGA configuration

Demonstrated system integration utilizing open-source ecosystem

PMU Github:

https://github.com/Inis-uofu/FPGA_Secured_Bitstream

Thank you for your attention

Laboratory for NanoIntegrated Systems Department of Electrical and Computer Engineering MEB building – University of Utah – Salt Lake City – UT – USA