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Accuracy degradation is significant 
for ultra-low precision 

Mixed-precision quantization 
addresses this, sensitive layers are 
kept at higher precision than less 
sensitive layers  

Problem: Search space is 
exponential to the number of layers 
in the model 

Background
Hessian-AWare Quantization (HAWQ)
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https://arxiv.org/pdf/2011.10680.pdf

https://arxiv.org/pdf/2011.10680.pdf


HAWQ: An advanced quantization library 
written for PyTorch 

Introduce hardware constraints (latency, 
bitwise operations, size limit, …) with 
precision

Features:

▷ Enables low-precision
▷ Mixed-precision quantization
▷ Integer-only computation graph 

Background cont.
Hessian-AWare Quantization (HAWQ)
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https://arxiv.org/pdf/2011.10680.pdf

https://arxiv.org/pdf/2011.10680.pdf
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Goal: Develop an end-to-end codesign workflow with HAWQ and hls4ml

https://fastmachinelearning.org/hls4ml/

https://fastmachinelearning.org/hls4ml/


Dataset of high-p
T

 jets from simulations of 
LHC proton-proton collisions

Multi-Layer Perceptron classifies jets into 
5 classes (light flavor quarks, gluons, W and 
Z bosons, and top quarks)

Timing Constraint: 1μs

Case Study: Jet Tagging

5



Scientific Challenges
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Experiments: LHC and DUNE

Science: Quantum, Magnet 
development, Fusion, Neuroscience, 
Nuclear, Material sciences, etc.

Industry: Internet-of-Things, 
manufacturing

 



Homogeneous Quantization
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Applying single bit width 
setting for all parameters

Performance begins to drop 
below INT8 weights

L1 Reg. and Batch 
normalization has little to no 
impact 



Mixed Precision 
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A step towards mixed-precision
▷ All weights are assigned a single bit 

width 

▷ All weights are assigned the same but 
different bit width 

▷ Increase precision of inputs to INT16 



Certain layers are more sensitive to quantization than 
others 

Mixed precision: aggressively quantize less sensitive 
layers to lower bit widths 

NNs  generalize better with locally flat minima - 
determined by the Hessian 

Use the Hessian as a sensitivity metric to quantization, 
where layers are ranked based on their trace

Hessian-Aware Quantization
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Integer Linear Programming (ILP): Optimization 
problem where variables are integers values, objection 
function and equations are linear

Compute and sort each layer by Ω, and select the bit 
setting with the minimal Ω

Hessian-Aware Quantization cont.
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L2 norm of quantization perturbation Hessian Trace



Bit Operations (BOPs) are computed to estimate model complexity and 
the number of operations per inference

Under constraints: ILP solves for the bit width of each layer, choosing 
the lowest Ω while remaining under the BOPs limit. 250 k to 550 k in 
steps of 50 k.

Other constraints: Latency (estimated or measured), model size 
(number of parameters or memory size)

Adding Constraints
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Automatic Bit Selection cont.
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● Each data point is color-coded based on the bit width of the first fully-connected layer. 
● It’s importance in quantization coincides with the observed clusters, with higher 

performing models using larger bit widths.
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Goal: Develop an end-to-end codesign workflow with HAWQ and hls4ml

https://fastmachinelearning.org/hls4ml/

https://fastmachinelearning.org/hls4ml/


QONNX

Quantized ONNX (QONNX) provides an 
extension to ONNX 

▷ Low-bitwidth quantization 
▷ Mixed and arbitrary precision
▷ IR Abstraction

QONNX/ONNX support in hls4ml scheduled to 
be released in v0.8.0 (Summer 2023)
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https://github.com/fastmachinelearning/hls4ml/pull/591


HAWQ to QONNX
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Quantized ONNX introduces new operators to represent uniform 
quantization and abstracts implementation details

1. Conversion of HAWQ models leverages the PyTorch Just-In-Time 
compiler to trace computational graph and translate standard 
ONNX and custom QONNX operators (Quant, BipolarQuant, 
Trunc)

2. Post conversion, QONNX graphs are optimized and formatted for 
hls4ml ingestion

We can evaluate its classification performance to ensure we haven’t lost 
accuracy using the qonnx python package

https://github.com/fastmachinelearning/qonnx


HAWQ to QONNX cont.
Model Translation (High Level View)
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Torch IR 
Graph to 
ONNX Graph 
Translator

Torch IR 
Graph

PyTorch JIT 
COMPILER



HAWQ to QONNX
Exporting
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Options:

▷ Export with QONNX nodes
▷ Export with only standard 

ONNX nodes

QONNX software utilities allows 
conversion from QONNX to 
Quantized Clip DeQuantize 
(QCDQ)  and vice versa

from hawq.utils.export import ExportManager

...

manager = ExportManager(hawq_model)
manager.export(
    torch.randn([1, 16]),  # input for tracing 
    "hawq2qonnx_model.onnx"
)

https://github.com/fastmachinelearning/qonnx.git 
https://arxiv.org/abs/2206.07527 

https://github.com/fastmachinelearning/qonnx.git
https://arxiv.org/abs/2206.07527
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Initial format 
(post-export)
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Format: Fold 
constants, infer 

shapes, 
standardize 

names  
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Format: Fold 
constants, infer 

shapes, 
standardize 

names  
Optimize: Merge 

scaling factors



QONNX to hls4ml
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Backend: Vivado [2020.1] 

Part: xcu250-figd2104-2L-e

ClockPeriod: 5

IOType: io_parallel 

HLSConfig:

  Model:

    ReuseFactor: 1

    Strategy: Resource

Memory mapped IO

Fully-unrolled loops (maximally 
parallelized design )

Vivado HLS (vitis support released in  v0.7)



Firmware Synthesis
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▷ The Hessian-aware solution significantly reduces all resource metrics 

compared to baseline  (LUTs, FFs, and DSPs)

○ Using 95.7%, 42.2%, and 36.3% fewer DSPs, LUTs, and FFs 

respectively

▷ Solution ‘QB’ from AutoQkeras minimizes total bits in model using 

binary and ternary operators at the cost of accuracy 

▷ Unlike AutoQkeras, Hessian-Aware Quantization is done only once, 

then fine tuned after quantization 

Firmware Synthesis cont. 
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Summary
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▷ Showed that the Hessian-aware solution to a mixed precision quantization 

scheme provides a reliable solution

▷ Used our exporter in HAWQ to translate multiple MLPs optimized with various 

bit settings to their QONNX IR

▷ Models were successfully translated from HAWQ to a firmware implementation, 

and we’ve observed the resource usage compared to the total BOPs and accuracy

▷ Compared the Hessian-aware model with a homogeneous bit configuration and 

baseline. 

▷ The Hessian-aware solution significantly reduced all resource metrics (LUTs, FFs, 

and DSPs), with the most significant improvements in DSPs and LUTs, using 

95.7% and 42.2% fewer DSPs and LUTs compared to baseline, respectively



Links
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HAWQ library 

HAWQ Papers [v1][v2][v3]

QONNX [paper][software]

HLS4ML

https://arxiv.org/abs/2304.06745

https://github.com/Zhen-Dong/HAWQ
https://openaccess.thecvf.com/content_ICCV_2019/html/Dong_HAWQ_Hessian_AWare_Quantization_of_Neural_Networks_With_Mixed-Precision_ICCV_2019_paper.html
https://proceedings.neurips.cc//paper/2020/file/d77c703536718b95308130ff2e5cf9ee-Paper.pdf
https://arxiv.org/abs/2011.10680
https://arxiv.org/abs/2206.07527
https://github.com/fastmachinelearning/qonnx
https://fastmachinelearning.org/hls4ml/
https://arxiv.org/abs/2304.06745

