
End-to-end codesign of
Hessian-aware quantized NNs
for FPGAs and ASICs
Javier Campos, Zhen Dong, Javier Duarte, Amir Gholami, Michael W. Mahoney,
Jovan Mitrevski, Nhan Tran

Accuracy degradation is significant
for ultra-low precision

Mixed-precision quantization
addresses this, sensitive layers are
kept at higher precision than less
sensitive layers

Problem: Search space is
exponential to the number of layers
in the model

Background
Hessian-AWare Quantization (HAWQ)

2

https://arxiv.org/pdf/2011.10680.pdf

https://arxiv.org/pdf/2011.10680.pdf

HAWQ: An advanced quantization library
written for PyTorch

Introduce hardware constraints (latency,
bitwise operations, size limit, …) with
precision

Features:

▷ Enables low-precision
▷ Mixed-precision quantization
▷ Integer-only computation graph

Background cont.
Hessian-AWare Quantization (HAWQ)

3

https://arxiv.org/pdf/2011.10680.pdf

https://arxiv.org/pdf/2011.10680.pdf

4
Goal: Develop an end-to-end codesign workflow with HAWQ and hls4ml

https://fastmachinelearning.org/hls4ml/

https://fastmachinelearning.org/hls4ml/

Dataset of high-p
T

 jets from simulations of
LHC proton-proton collisions

Multi-Layer Perceptron classifies jets into
5 classes (light flavor quarks, gluons, W and
Z bosons, and top quarks)

Timing Constraint: 1μs

Case Study: Jet Tagging

5

Scientific Challenges

6

Experiments: LHC and DUNE

Science: Quantum, Magnet
development, Fusion, Neuroscience,
Nuclear, Material sciences, etc.

Industry: Internet-of-Things,
manufacturing

Homogeneous Quantization

7

Applying single bit width
setting for all parameters

Performance begins to drop
below INT8 weights

L1 Reg. and Batch
normalization has little to no
impact

Mixed Precision

8

A step towards mixed-precision
▷ All weights are assigned a single bit

width

▷ All weights are assigned the same but
different bit width

▷ Increase precision of inputs to INT16

Certain layers are more sensitive to quantization than
others

Mixed precision: aggressively quantize less sensitive
layers to lower bit widths

NNs generalize better with locally flat minima -
determined by the Hessian

Use the Hessian as a sensitivity metric to quantization,
where layers are ranked based on their trace

Hessian-Aware Quantization

9

Integer Linear Programming (ILP): Optimization
problem where variables are integers values, objection
function and equations are linear

Compute and sort each layer by Ω, and select the bit
setting with the minimal Ω

Hessian-Aware Quantization cont.

10

L2 norm of quantization perturbation Hessian Trace

Bit Operations (BOPs) are computed to estimate model complexity and
the number of operations per inference

Under constraints: ILP solves for the bit width of each layer, choosing
the lowest Ω while remaining under the BOPs limit. 250 k to 550 k in
steps of 50 k.

Other constraints: Latency (estimated or measured), model size
(number of parameters or memory size)

Adding Constraints

11

Automatic Bit Selection cont.

12

● Each data point is color-coded based on the bit width of the first fully-connected layer.
● It’s importance in quantization coincides with the observed clusters, with higher

performing models using larger bit widths.

13
Goal: Develop an end-to-end codesign workflow with HAWQ and hls4ml

https://fastmachinelearning.org/hls4ml/

https://fastmachinelearning.org/hls4ml/

QONNX

Quantized ONNX (QONNX) provides an
extension to ONNX

▷ Low-bitwidth quantization
▷ Mixed and arbitrary precision
▷ IR Abstraction

QONNX/ONNX support in hls4ml scheduled to
be released in v0.8.0 (Summer 2023)

14

https://github.com/fastmachinelearning/hls4ml/pull/591

HAWQ to QONNX

15

Quantized ONNX introduces new operators to represent uniform
quantization and abstracts implementation details

1. Conversion of HAWQ models leverages the PyTorch Just-In-Time
compiler to trace computational graph and translate standard
ONNX and custom QONNX operators (Quant, BipolarQuant,
Trunc)

2. Post conversion, QONNX graphs are optimized and formatted for
hls4ml ingestion

We can evaluate its classification performance to ensure we haven’t lost
accuracy using the qonnx python package

https://github.com/fastmachinelearning/qonnx

HAWQ to QONNX cont.
Model Translation (High Level View)

16

Torch IR
Graph to
ONNX Graph
Translator

Torch IR
Graph

PyTorch JIT
COMPILER

HAWQ to QONNX
Exporting

17

Options:

▷ Export with QONNX nodes
▷ Export with only standard

ONNX nodes

QONNX software utilities allows
conversion from QONNX to
Quantized Clip DeQuantize
(QCDQ) and vice versa

from hawq.utils.export import ExportManager

...

manager = ExportManager(hawq_model)
manager.export(
 torch.randn([1, 16]), # input for tracing
 "hawq2qonnx_model.onnx"
)

https://github.com/fastmachinelearning/qonnx.git
https://arxiv.org/abs/2206.07527

https://github.com/fastmachinelearning/qonnx.git
https://arxiv.org/abs/2206.07527

18

Initial format
(post-export)

19

Format: Fold
constants, infer

shapes,
standardize

names

20

Format: Fold
constants, infer

shapes,
standardize

names
Optimize: Merge

scaling factors

QONNX to hls4ml

21

Backend: Vivado [2020.1]

Part: xcu250-figd2104-2L-e

ClockPeriod: 5

IOType: io_parallel

HLSConfig:

 Model:

 ReuseFactor: 1

 Strategy: Resource

Memory mapped IO

Fully-unrolled loops (maximally
parallelized design)

Vivado HLS (vitis support released in v0.7)

Firmware Synthesis

22

▷ The Hessian-aware solution significantly reduces all resource metrics

compared to baseline (LUTs, FFs, and DSPs)

○ Using 95.7%, 42.2%, and 36.3% fewer DSPs, LUTs, and FFs

respectively

▷ Solution ‘QB’ from AutoQkeras minimizes total bits in model using

binary and ternary operators at the cost of accuracy

▷ Unlike AutoQkeras, Hessian-Aware Quantization is done only once,

then fine tuned after quantization

Firmware Synthesis cont.

23

Summary

24

▷ Showed that the Hessian-aware solution to a mixed precision quantization

scheme provides a reliable solution

▷ Used our exporter in HAWQ to translate multiple MLPs optimized with various

bit settings to their QONNX IR

▷ Models were successfully translated from HAWQ to a firmware implementation,

and we’ve observed the resource usage compared to the total BOPs and accuracy

▷ Compared the Hessian-aware model with a homogeneous bit configuration and

baseline.

▷ The Hessian-aware solution significantly reduced all resource metrics (LUTs, FFs,

and DSPs), with the most significant improvements in DSPs and LUTs, using

95.7% and 42.2% fewer DSPs and LUTs compared to baseline, respectively

Links

25

HAWQ library

HAWQ Papers [v1][v2][v3]

QONNX [paper][software]

HLS4ML

https://arxiv.org/abs/2304.06745

https://github.com/Zhen-Dong/HAWQ
https://openaccess.thecvf.com/content_ICCV_2019/html/Dong_HAWQ_Hessian_AWare_Quantization_of_Neural_Networks_With_Mixed-Precision_ICCV_2019_paper.html
https://proceedings.neurips.cc//paper/2020/file/d77c703536718b95308130ff2e5cf9ee-Paper.pdf
https://arxiv.org/abs/2011.10680
https://arxiv.org/abs/2206.07527
https://github.com/fastmachinelearning/qonnx
https://fastmachinelearning.org/hls4ml/
https://arxiv.org/abs/2304.06745

