End-to-end codesign of
Hesslan-aware quantized NNs
for FPGAs and ASICs

Javier Campos, Zhen Dong, Javier Duarte, Amir Gholami, Michael W. Mahoney,
Jovan Mitrevski, Nhan Tran

2= Fermilab

Background

Hessian-AWare Quantization (HAWQ)

Accuracy degradation is significant
for ultra-low precision

Mixed-precision quantization
addresses this, sensitive layers are
kept at higher precision than less
sensitive layers

Problem: Search space is
exponential to the number of layers
in the model

Sensitivity: Flat vs. Sharp Local Minima
Inference Latency

0

2
mINT8 mINTA

,,’/ &>
512 512
conv16/17

128 128
conv6/7

d
d
d
g
BE
d
i

https://arxiv.org/pdf/2011.10680.pdf

https://arxiv.org/pdf/2011.10680.pdf

Background cont.
Hessian-AWare Quantization (HAWQ)

HAWQV3: Dyadic Neural Network Quantization
HAWQ- An adva nced q ua ntization Iibra ry Zhewei Yao, Zhen Dong, Zhangcheng Zheng, Amir Gholami, Jiali Yu, Eric Tan, Leyuan Wang, Qijing Huang, Yida Wang,

Michael W. Mahoney, Kurt Keutzer

Wr I tte n fO r PyTO rCh Current low-precision quantization algorithms often have the hidden cost of conversion back and forth from floating point to

quantized integer values. This hidden cost limits the latency improvement realized by quantizing Neural Networks. To address
I t d h d t . t | t this, we present HAWQV3, a novel mixed-precision integer-only quantization framework. The contributions of HAWQV3 are the
n rO U Ce a r Wa re CO nS ra I n S a e ncy, following: (i) An integer-only inference where the entire computational graph is performed only with integer multiplication,

. addition, and bit shifting, without any floating point operations or even integer division; (ii) A novel hardware-aware mixed-
b I tWI Se O pe ratlo ns’ S I Ze | I m It’ .o .) Wlth precision quantization method where the bit-precision is calculated by solving an integer linear programming problem that
.. balances the trade-off between model perturbation and other constraints, e.g., memory footprint and latency; (iii) Direct
prec I S I o n hardware deployment and open source contribution for 4-bit uniform/mixed-precision quantization in TVM, achieving an
average speed up of 1.45x for uniform 4-bit, as compared to uniform 8-bit for ResNet50 on T4 GPUs; and (iv) extensive
evaluation of the proposed methods on ResNet18/50 and InceptionV3, for various model compression levels with/without mixed
Featu res: precision. For ResNet50, our INT8 quantization achieves an accuracy of 77.58%, which is 2.68% higher than prior integer-only
work, and our mixed-precision INT4/8 quantization can reduce INT8 latency by 23% and still achieve 76.73% accuracy. Our
framework and the TVM implementation have been open sourced.

Enables low-precision
Mixed-precision quantization https://arxiv.org/pdf/2011.10680.pdf
Integer-only computation graph

https://arxiv.org/pdf/2011.10680.pdf

https://fastmachinelearning.org/hls4ml/

Keras 1nnnni

G pyTorch his 4 ml i
€ ONNX

682 Github stars,
580 downloads last month

Ql::t‘;:rd Hardware

Qkeras (Googie) VIVADO*> Menior:
Brevitas (AMD))
HAWQ (UC Berkeley)
QONNX (Microsoft/AMD)
- —

Goal: Develop an end-to-end codesign workflow with HAWQ and his4ml

https://fastmachinelearning.org/hls4ml/

Case Study: Jet Tagging

Dataset of high-p. jets from simulations of
LHC proton-proton collisions

w-aqq

Multi-Layer Perceptron classifies jets into 16 iléputs

5 classes (light flavor quarks, gluons, W and 64 nodes
activation: ReLU

Z bosons, and top quarks) g

32 nodes
activation: ReLU

Timing Constraint: 1us 32 rides

activation: ReLU

8

5 outputs
activation: SoftMax

1014 T T T T T T]

% LHC on-sensor FastML Science
(Work in Progress)

Scientific Challenges

Experiments: LHC and DUNE

Science: Quantum, Magnet
development, Fusion, Neuroscience,

Quantum
10"°-LHC + LEIC

near-sensor r_F{usion ,_‘_1
’_$—+¢ LHC trigger

Streaming data rate [B/s]

DUNE on-detector T4D TEM DUNE
Nuclear, Material sciences, etc. heow T |
G Neuro

. 105
manufacturing

Beam control

Industry: Internet-of-Things, Quench detection {
MLPerf Tiny (IC)

fr——

4| _
10 MLPerf Mobile (NLP)
102 | | | | | |

10° 107 10° 103 10! 10! 10° 10°

Reference latency [s]

Homogeneous Quantization

Applying single bit width Precision Baseline [%] Li[%] BN[%] L;+BN [%]
setting for all parameters Weights Inputs
INT12 INT12 76.916 72.105 77.180 76.458
INT8 INT8 76.605 76.448 76.899 76.879
Performance begins to drOp INT6 INT6 73.55 73.666 74.468 74.415
INT4 INT4 62.513 63.167 63.548 63.431

below INT8 weights

FP-32 FP-32 76.461 76.826 76.853 76.813

L1 Reg. and Batch
normalization has little to no
impact

Mixed Precision

A step towards mixed-precision

> Allweights are assigned a single bit

width

> Allweights are assigned the same but

different bit width

> Increase precision of inputs to INT16

Accuracy

77.5r T T T 77.5 T T T
__________________________ S=of I RSN P SUI I W P S e L R
77.0F == ,—_:;F?—‘ﬂ:f: | 77.0 Y 1T e
76.5 1 76.5
76.0 -1 76.0
75.5 1 75.5
Homogeneous Input Fixed INT16 Input
75.0 —e- Nominal 1750 —e- Nominal
- L1 R - L1
74.5 - BN 74.5 - BN
74.0 - L1+BN 1 74.0 - L1+BN
—- Baseline —— Baseline

73.5

73.5

Hesslan-Aware Quantization

Certain layers are more sensitive to quantization than
others

Average Hessian Trace

. - 100F 7
Mixed precision: aggressively quantize less sensitive - -

layers to lower bit widths

NNs generalize better with locally flat minima -

determined by the Hessian 10-1- .

(16,645 <6432> <3232> <3255
Layer

Use the Hessian as a sensitivity metric to quantization,
where layers are ranked based on their trace

Hesslan-Aware Quantization cont.

Integer Linear Programming (ILP): Optimization
problem where variables are integers values, objection
function and equations are linear

L L —
Q=730 =yTr@H)|*

i=1 i=1

Average Hessian Trace

100]

||Q(Wi) - Wi“z

Hessian Trace L2 norm of quantization perturbation

Compute and sort each layer by Q, and select the bit
setting with the minimal Q 10-1 .

i I S (S S S SR SR S
<16,64> <64,32> <32,32> <32,5>
Layer

10

Adding Constraints

Bit Operations (BOPs) are computed to estimate model complexity and
the number of operations per inference

BOPs ~ mn((1 — fp)babw + ba + buw + logy(n))

Under constraints: ILP solves for the bit width of each layer, choosing
the lowest Q while remaining under the BOPs limit. 250 k to 550 k in
steps of 50 k.

Other constraints: Latency (estimated or measured), model size
(number of parameters or memory size)

11

Automatic Bit Selection cont.

50770_ z T J T ! ; T X y T g : T i 4 i T u J T " T T : 4 I T : I | T ! I T : 3
(4] - 0o % © ’. - ’ e‘..‘ . .'$ o ' x'“ @ ° A |
§ 0768__ . .':. '.,;::%:::.\.'?0;48" .}’.;?g?. ..0:0'. LY o° ® s
O 0.766| Syl Mt T .]

* SOt X ALY & JE N St

0.764} L S I LR A & LI L .
6 . - ..". L] °® ° a W o.. % L . . 4'bit i
0.762} . ™ o« % =
; s 2 ° ° ®e® e @ ° 5'b|t]
0.760[° :.: . '.: .~... .:.3" : » '.:}. . ..o.o :: : > 6-bit |
0.758| VORI A e o < 7-bit -
5| . '. o : . o o . it
0.756] A — " . 8-bit
. A ILP
0'754-— L | L | L L L Il L L L L . L | L L L | L L 1 L L | L L L | L L | L L L | L _~
165000 195000 225000 255000 285000 315000 345000 375000 405000 435000 465000
BOPs
e Eachdata point is color-coded based on the bit width of the first fully-connected layer.
e [t'simportance in quantization coincides with the observed clusters, with higher
performing models using larger bit widths. 12

https://fastmachinelearning.org/hls4ml/

e his 4 mil e
€ ONNX

682 Github stars,
580 downloads last month

Ql::t‘;:rd Hardware

Qkeras (Googie) VIVADO*> Menior:
Brevitas (AMD))
HAWQ (UC Berkeley)
QONNX (Microsoft/AMD)
- —

Goal: Develop an end-to-end codesign workflow with HAWQ and hls4ml

https://fastmachinelearning.org/hls4ml/

QONNX

Quantized ONNX (QONNX) provides an
extension to ONNX

> Low-bitwidth quantization O N N X
> Mixed and arbitrary precision
> IR Abstraction

his 4 ml

QONNX/ONNX supportin hls4ml scheduled to
be released in v0.8.0 (Summer 2023)

14

https://github.com/fastmachinelearning/hls4ml/pull/591

HAWQ to QONNX

Quantized ONNX introduces new operators to represent uniform
guantization and abstracts implementation details

Mul

B =0.02245281...

1. Conversion of HAWQ models leverages the PyTorch Just-In-Time
compiler to trace computational graph and translate standard
ONNX and custom QONNX operators (Quant, BipolarQuant,
Trunc)

2. Post conversion, QONNX graphs are optimized and formatted for
his4ml ingestion

We can evaluate its classification performance to ensure we haven't lost
accuracy using the gonnx python package

yyyyyy

https://github.com/fastmachinelearning/qonnx

def

__init__(self):

super(Net, self).__init__() PyTorCh ."T
1 input image channel, 6 output channels, 5x5 square convolution
kernel COMP"'ER

self.convl

nn.Conv2d(1, 6, 5) TOI’Ch IR
self.conv2 = nn.Conv2d(6, 16, 5)

an affine operation: y = Wx + b

self.fecl = nn.Lineaxr(16 * 5 %= 5, 120) # 5+5 from image dimension
self.fc2 = nn.Lineaxr (120, 84)

self.fe3 = nn.Lineax (84, 10)

Graph

Torch IR
Graph to
ONNX Graph
Translator

Gemm

B (120x400)
C (120)

Conv

W (16x6x5x5)
B (16)

Conv

B (6)

MaxPool MaxPool Flatten

1x1x32x32

Gemm

B (10x84)
€ 10y

Gemm

B (84x120)
C (84)

https://github.com/fastmachinelearning/gonnx.git

https://arxiv.org/abs/2206.07527

HAWQ to QONNX

Exporting

Options:
> Export with QONNX nodes

> Export with only standard
ONNX nodes

QONNX software utilities allows
conversion from QONNX to
Quantized Clip DeQuantize
(QCDQ) and vice versa

from hawaq.utils.export import ExportManager

manager = ExportManager(hawqg_model)
manager.export(
torch.randn([1, 16]), # input for tracing
"hawg2qonnx_model.onnx"

)

17

https://github.com/fastmachinelearning/qonnx.git
https://arxiv.org/abs/2206.07527

Quant
0 (16x64)

1
0
6

Quant

Div

B =0.18945416...

MatMul

B =0.00443813...

0 (64x32)
1=1
2=0
3=6

Div

B =0.19984923...

MatMul

Quant

Initial format
(post-export)

Quant

0 (16x64)
1=1
2=0
3=6

Div

B =0.18945416...

MatMul

B =0.00443813...

1=1
2=0
3=6

Div

B =0.19984923...

MatMul

Format: Fold
constants, infer

shapes,
standardize
names

0 (64x32)

Quant
0 (64x32)

1=1
2=0
3=6

64x32

global_in

Quant

0 (16x64)
1=1
2=0
3=6

1x16

Div

B =0.18945416...

16x64

WENVIT

1x64

B =0.00443813...

1x64

1x64

Div

B =0.19984923...

Quant

0 (16x64)
1=1
2=0
3=6

1x16

Div

B =0.18945416...

MatMul

B =0.00443813...

Div

B =0.19984923...

MatMul

Format: Fold
constants, infer
shapes,
standardize
names

0 (64x32)
1:=4
2=0
3=6

global_in global_in

Quant

0 (16x64)
1=1
2=0
3=6

0 (16x64)
1=1
2=0
3=6

1x16

Div

B =0.18945416...

Div

B =0.18945416...

16x64 16x64

Optimize: Merge
scaling factors

WENVIT MatMul

1x64 1x64
B = 0.00443813.. 0 (64x32)
12=_10 B = 0.02220741..
<64 -
3=6
Quant 1x64
0 (64x32)
121
2=0
3=6
1x64

1x64

Div

B =0.19984923... 32

MatMul

QONNX to hlsgml

Vivado HLS (vitis support released in v0.7)

Backend: Vivado [2020.1]

Part: xcu250-figd2104-2L-e Memory mapped 10

ClockPeriod: 5

IOType: io parallel hls 4 mI

HLSConfig: .
Fully-unrolled loops (maximally

Model: parallelized design)
ReuseFactor: 1

Strategy: Resource V|\/ADO‘
& XILINX

Firmware Synthesis

x10° x10% | - | x108
= L AER
1.4 | 3.0 ®n1.2
- | ()
1.2 55 1.0
1.0 | 0.8
2.0
0.8 e " s ' 0.6
i st | | 18 .
0.6 Al - ‘ 0.4
0_4, e . | 1 0_ — . .-E ‘_ :,l.-.’.‘ . .] P |
S | . x10° L~ L f g et x10°
115 200 285 370 455 115 200 285 370 455 115 200 285 3.70 455
BOPs BOPs BOPs
22

Firmware Synthesis cont.

Model Acc. [%] Latency [ns] Resources Sparsity [%] BOPs
LUTs FFs DSPs
Basline 76.85 65 60,272 15,116 3,602 0 4,652,832
INTS8 76.45 95 54,888 14,210 671 30 281,277
Hessian 75.78 90 34,842 9,622 154 33 182,260
QB 72.79 60 16,144 4,172 5 23 122,680

> The Hessian-aware solution significantly reduces all resource metrics
compared to baseline (LUTs, FFs, and DSPs)
o Using 95.7%,42.2%, and 36.3% fewer DSPs, LUTs, and FFs
respectively
> Solution ‘QB’ from AutoQkeras minimizes total bits in model using
binary and ternary operators at the cost of accuracy
> Unlike AutoQkeras, Hessian-Aware Quantization is done only once,

then fine tuned after quantization 23
L .. 00000000000

Summary

Showed that the Hessian-aware solution to a mixed precision quantization
scheme provides areliable solution

Used our exporter in HAWQ to translate multiple MLPs optimized with various
bit settings to their QONNX IR

Models were successfully translated from HAWQ to a firmware implementation,
and we've observed the resource usage compared to the total BOPs and accuracy
Compared the Hessian-aware model with a homogeneous bit configuration and
baseline.

The Hessian-aware solution significantly reduced all resource metrics (LUTs, FFs,
and DSPs), with the most significant improvements in DSPs and LUTs, using
95.7% and 42.2% fewer DSPs and LUTs compared to baseline, respectively

24

LINKS

HAWAQ library

HAWQ Papers [v1][v2][v3]
QONNX [paper][software]
HLS4AML

End-to-end codesign of Hessian-aware quantized neural networks for FPGAs
and ASICs

JAVIER CAMPOS, JOVAN MITREVSKI, and NHAN TRAN, Fermi National Accelerator Laboratory, USA
ZHEN DONG, AMIR GHOLAMI*, and MICHAEL W. MAHONEYT, University of California Berkeley,
USA

JAVIER DUARTE, University of California San Diego, USA

We develop an end-to-end workflow for the training and implementation of co-designed neural networks (NN) for efficient field-
programmable gate array (FPGA) and application-specific integrated circuit (ASIC) hardware. Our approach leverages Hessian-aware
quantization (HAWQ) of NN, the Quantized Open Neural Network Exchange (QONNX) intermediate representation, and the hls4ml
tool flow for transpiling NNs into FPGA and ASIC firmware. This makes efficient NN implementations in hardware accessible to
nonexperts, in a single open-sourced workflow that can be deployed for real-time machine-learning applications in a wide range of
scientific and industrial settings. We demonstrate the workflow in a particle physics application involving trigger decisions that must
operate at the 40 MHz collision rate of the CERN Large Hadron Collider (LHC). Given the high collision rate, all data processing must
be implemented on custom ASIC and FPGA hardware within the strict area and latency requirements. Based on these constraints, we

implement an optimized mixed-precision NN classifier for high-momentum particle jets in simulated LHC proton-proton collisions.

Additional Key Words and Phrases: neural networks, field programmable gate arrays, firmware, high-level synthesis

https://arxiv.org/abs/2304.06745

25

https://github.com/Zhen-Dong/HAWQ
https://openaccess.thecvf.com/content_ICCV_2019/html/Dong_HAWQ_Hessian_AWare_Quantization_of_Neural_Networks_With_Mixed-Precision_ICCV_2019_paper.html
https://proceedings.neurips.cc//paper/2020/file/d77c703536718b95308130ff2e5cf9ee-Paper.pdf
https://arxiv.org/abs/2011.10680
https://arxiv.org/abs/2206.07527
https://github.com/fastmachinelearning/qonnx
https://fastmachinelearning.org/hls4ml/
https://arxiv.org/abs/2304.06745

