
Simulation Support for Fast and Accurate Large-
Scale GPGPU & Accelerator Workloads

Vishnu Ramadas*, Matthew Poremba^, Bradford M. Beckmann^, and Matthew D. Sinclair*^
*University of Wisconsin-Madison, ^AMD Research & Advanced Development
vramadas@wisc.edu

mailto:vramadas@wisc.edu

2

Applications are Increasingly Diverse

High fidelity tools crucial for early-stage design exploration, optimizations for these workloads

3

Simulating entire workloads would take months (or years) in modern cycle level simulators

Key Challenge 1: Application Scaling

Source:
1. https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
2. https://blogs.nvidia.com/blog/2022/03/25/what-is-a-transformer-model/

BERT,
0.34B

Megatron-
LM, 8.3

GPT-3,
175B

Mega-
TNLG,
530B

5300B

15900B

0.1

1

10

100

1000

10000

100000

2018 2020 2022 2024 2026

Pa
ra

m
et

er
s C

ou
nt

 (B
ill

io
ns

)

Need to do better!

4

Key Challenge 2: Simulator Capabilities

Can we enhance simulators to overcome their downsides?

gem5

SST

FireSim

Our Goal

Fast Full System High Fidel. Scalable No RTL
û û üüü

ü ü üûû

ü û ûüü

ü ü üüü

5

Why gem5?

• gem5 uniquely suited to model systems with CPUs, GPUs, and accelerators
• Can model both homogeneous and heterogeneous systems
• Widely used in academia, industry, and national labs (6000+ citations)
• Can research µarch, caches, main memory, I/Cs, interfaces, coherence, consistency, …
• Models entire system, including OS and runtime – not reliant on external tools, traces
• Full system effects likely increasingly important as application diversity and co-design increase

However, must efficiently support modern accelerator workloads

6

How Can We Scalably Run Large-Scale Workloads in gem5?

• Holistic solution that scalably runs modern frameworks in gem5:
• Key components:

PyTorch TensorFlow Mixed-Fidelity
Simulations

Application
Checkpointing

Custom
Accelerators

Today’s Focus: GPGPUs
Preliminary Results: Only 1.58x - 3x slower than bare metal

Large-Scale App Support
Scalable Simulations Universality

7

Outline

• Motivation
• Background
• Design
• Conclusion & Future Work

8

CPU-GPU Support in gem5

• Supports complex systems with CPUs, GPUs,
interconnects, memory, etc.
• Execution-driven, cycle-level
• ISA: Alpha, ARM, MIPS, PowerPC, RISC-V, SPARC, x86
• CPUs: AtomicSimple, TimingSimple, KVM, Minor, O3

• Current GPU models [Gutierrez, et al. HPCA ’18]
§ Simulates HIP applications (AMD’s GPGPU language)
§ Recently added support for MI200/MI300 GPUs

9

gem5’s GPU Simulation modes

• AMD GPUs: ROCm (Radeon Open Compute) stack to interface with CPU(s)
• ROCm stack:

• Runtime layer – ROCr
• Thunk (user-space driver) ROCt
• Kernel fusion driver (KFD) – ROCk (in Linux)
• MIOpen – machine intelligence (MI/ML) library
• rocBLAS – BLAS (e.g., GEMMs) library
• HIP (roughly: LLVM backend, clang front-end)

• Syscall emulation (SE) mode: simulate all except ROCk, which gem5 emulates via
docker

• Full system (FS) mode: simulated disk image containing the entire ROCm stack

10

gem5 CPU-GPU SE Mode Modern Workload Support

MEM

CUCUCUCU
CP

X86
Corex86

Core

hardware
models

CPU GPU

GCN3/Vega ELF +
Code metadata

x86 ELF
HIP

Libraries

ROCr

ROCt

ROCk

HIProcBLAS, …MIOpenApp Source

User space

OS kernel space

We added this support
[Alsop IISWC ‘19], [Roarty gem5 Workshop ‘21]

APIs to HIP libraries
SE mode currently doesn’t
support frameworks like PyTorch,
TensorFlow

System calls emulated
through docker

(SE Mode)

11

Outline

• Motivation
• Background
• Design
• Conclusion & Future Work

12

Large-Scale Workloads: Enabling PyTorch/TensorFlow (gem5
GPUFS Mode Support)

MEM

CUCUCUCU
CP

X86
Corex86

Core

hardware
models

CPU GPU

GCN3/Vega ELF +
Code metadata

x86 ELF
HIP

Libraries

ROCr

ROCt

ROCk

HIProcBLAS, …MIOpenApp Source

User space

OS kernel space

PyTorch,
TensorFlowApp Disk image containing

ubuntu-22.04 with
ROCm 6.1,

PyTorch,TensorFlow,
and other

dependenciesgem5’s CPU model
simulates the system calls

KVM x86
CPU

ML Frameworks make it easy to build large scale applications, but very slow to
simulate completely

How do we make this tractable?

Can run MNIST, nanoGPT, etc. layers in public gem5!

13

Our Vision to Run Large-Scale Workloads
• Not all application phases require high fidelity

• Some functions/code blocks are “more important” to its behavior

• Key Insight 1: Some application regions can be run on lower fidelity models
• Can leverage KVM CPU support to fast-forward through these regions
•Mixed Fidelity Simulation: only simulate regions of interest with high fidelity models

• Key Insight 2: Some application phases simulate same data/code many times
• Can create checkpoint after less important phases (e.g., file reading)
• All subsequent simulations restore checkpoint, avoiding repeated simulations

• Or: simulate more important, but repeated phase once then utilize checkpoint

14

Mixed Fidelity for Less Important Application Phases

Simulated system

Time

kernel
launch

kernel
completion

kernel
launch

CPU
GPU

Wall Clock

kernel
launch

kernel
comp. kernel

launchCPU

GPU

functional only
simulation

functional+timing
simulation

• May not want to fully simulate certain phases of applications
• Solution: Utilize host CPU to fast forward through CPU code

15

• Observation: GPU model more simulation time intensive than CPU models
• Idea: Leverage PyTorch’s/TensorFlow’s CPU offloading feature

• Offload phases (GPU kernels) requiring less fidelity to faster/lower fidelity CPU models

• Reduces simulation runtime without significantly compromising fidelity

Mixed Fidelity for Less Important Application Phases (Cont.)

Slower Faster

High
Fidelity

Low
FidelityO3 CPU

MinorCPU

TimingSimpleCP
U

AtomicSimpleC
PU

KVM CPU

16

Region of interest

Mixed Fidelity for Less Important Application Phases (Cont.)

Simulated system

Time

kernel
launch

kernel
completion

kernel
launch

CPU
GPU

Wall Clock

kernel
launch

kernel
comp. kernel

launchCPU

GPU

functional only
simulation

functional+timing
simulation

• Offload GPU Kernels onto CPU and run them at low fidelity

Preliminary Results: Only 1.58x - 3x slower than bare metal

17

Mixed Fidelity Simulations: How Much Does This Help?

• Cycle Level GPU Simulation : 10-50 KIPS

• Functional KVM Simulation : 100s MIPS
• KVM CPU emulating GPU : 10s MIPS

• Conservative speedup for a kernel containing 2B SIMD instructions:
• 11 hours of cycle-level GPU simulation
• 3 minutes to execute on KVM CPU – single threaded

On-going Work: full set of results for GPU workloads
Mixed Fidelity makes gem5 speeds much closer to real HW

18

Restore
checkpoint

Simulated system

Time

kernel
launch

kernel
completion

kernel
launch

CPU
GPU

Wall Clockkernel
launch

CPU

GPUfunctional+timing
simulation

functional only
simulation

Application Checkpointing: Further Speeding up Simulations

• Need not re-run parts of application when simulating multiple times
• Solution: Checkpoint before region of interest during first run and restore later

Region of interest

Take checkpoint

Can combine with fast-forwarding to further speed up
We added this support and released it publicly

19

Application Checkpointing: How Much Does This Help?

• Ran 100 kernel iterations of square (matrix-vector addition GPU program):
• End-to-end Application runtime in gem5: 1076.33 sec

• Created a checkpoint after 95 kernel iterations:
• Restoration runtime: 122.94 sec (89 % faster)

• Fidelity Comparison:
• Compare last five kernels of original application with the five kernels after restoration

Metric Original Application Checkpoint Restoration Difference

Number of GPU Clock Cycles 126336037500 126405051500 Cycles 0.05%

ALU Instruction 284208 283800 0.14%

Memory Instructions 39136 39080 0.14%

On-going Work: full set of results for GPU workloads

20

Outline

• Motivation
• Background
• Design
• Conclusion & Future Work

21

Conclusion
• Simulation tools must evolve to scalably model modern workloads
• gem5 Vision: Swiss army knife that efficiently supports modern frameworks
• Run CPUs, GPUs, and accelerators; enables cross-layer, early-stage exploration
• Frameworks for Large-Scale Workload Simulation
•Mixed Fidelity Simulation
• Application Checkpointing

• Our work enables previously not possible research
• Next Steps:
• Integrate accels. into mainline gem5 (e.g., gem5-SALAM [Rogers et al., MICRO ‘20])
• Profile ML workloads to annotate regions for reduced fidelity & checkpointing

