
Past, Present and Future of
Designing, Integrating and

Simulating RTL Models

OSCAR 2024

Guillem López Paradís, Jonathan Balkind,
Adrià Armejach, Miquel Moretó

Motivation

• Boom in fabricating new hw

2

Motivation

• Boom in fabricating new hw

• Heterogeneous hardware on
the same SoC requires
complex integration and
verification processes

3

Multicore
CPU

AI Engine

Mobile SoC

Multi-mode
modem

Video
processor

Multicore
GPU

Sensor
processor

Audio
processor

Security
engine

Image signal
processor

Motivation

• Boom in fabricating new hw

• Heterogeneous hardware on
the same SoC requires
complex integration and
verification processes

4

Multicore
CPU

AI Engine

Mobile SoC

Multi-mode
modem

Video
processor

Multicore
GPU

Sensor
processor

Audio
processor

Security
engine

Image signal
processor

Motivation

• Boom in fabricating new hw

• Heterogeneous hardware on
the same SoC requires
complex integration and
verification processes

5

Multicore
CPU

AI Engine

Mobile SoC

Multi-mode
modem

Video
processor

Multicore
GPU

Sensor
processor

Audio
processor

Security
engine

Image signal
processor

Motivation

• Boom in fabricating new hw

• Heterogeneous hardware on the same SoC requires complex
integration and verification processes

• Improve the tools to verify large-scale hardware designs!

6

Outline

•Gem5+RTL: A Full-System RTL Simulation Infrastructure

• Fast Behavioural RTL Simulation of 10B Transistor SoC

Designs with Metro-MPI

7

Gem5+RTL Objectives

• Framework that enables easy integration of existing RTL hardware
blocks within a SoC for full-system simulations

8

Gem5+RTL Objectives

• Framework that enables easy integration of existing RTL hardware
blocks within a SoC for full-system simulations

• Deliver a comprehensive hardware/software ecosystem where all the
main components of the SoC are present with a complete software stack

9

Gem5+RTL Objectives

• Framework that enables easy integration of existing RTL hardware
blocks within a SoC for full-system simulations

• Deliver a comprehensive hardware/software ecosystem where all the
main components of the SoC are present with a complete software stack

• Enable testing the implemented functionality of these hardware blocks
and also, the expected performance they will provide on an existing SoC
design

10

Framework Design

11

1. We use Verilator and GHDL to obtain a C++ model from an RTL
model written in Verilog/SystemVerilog and VHDL

2. We provide a wrapper to interact with it and gem5. Then, the
wrapper and the C++ model are combined into a shared library

3. In gem5, a generic framework is provided to ease the integration of
a wide range of potential hardware designs: generic RTLObject class

Framework Design

12

1. We use Verilator and GHDL to obtain a C++ model from an RTL
model written in Verilog/SystemVerilog and VHDL

2. We provide a wrapper to interact with it and gem5. Then, the
wrapper and the C++ model are combined into a shared library

3. In gem5, a generic framework is provided to ease the integration of
a wide range of potential hardware designs: generic RTLObject class

Framework Design

13

1. We use Verilator and GHDL to obtain a C++ model from an RTL
model written in Verilog/SystemVerilog and VHDL

2. We provide a wrapper to interact with it and gem5. Then, the
wrapper and the C++ model are combined into a shared library

3. In gem5, a generic framework is provided to ease the integration of
a wide range of potential hardware designs: generic RTLObject class

Connectivity Examples

14

Connectivity Examples

15

Accelerator Use Case

Connectivity Examples

16

PMU Use Case

Gem5+RTL
https://gitlab.bsc.es/glopez/gem5-rtl

guillem.lopez@bsc.es

Acknowledgments

Outline

•Gem5+RTL: A Full-System RTL Simulation Infrastructure

• Fast Behavioural RTL Simulation of 10B Transistor SoC

Designs with Metro-MPI

18

Motivation: RTL Simulation Performance

19

• SoCs today are reaching
10B+ transistors in scale

Name #Cores #Billions
Transistors

Apple M2 8-12 20 - 67

AWS Graviton 3 64 55

Esperanto
ET-SoC-1

1024 24

Motivation: RTL Simulation Performance

20

• SoCs today are reaching
10B+ transistors in scale

• RTL Simulation performance
drops as the design grows

Motivation: RTL Simulation Performance

21

• SoCs today are reaching
10B+ transistors in scale

• RTL Simulation performance
drops as the design grows

Simulation
Speed

NoC RTL-Simulation with MPI

NoC 3x3

22

NoC RTL-Simulation with MPI

23

NoC 3x3 NoC 3x3

Exploting SoCs’ Natural Boundaries

• Partition the design at
“latency-insensitive”
interfaces (NoCs, AXI, etc)

24

Exploting SoCs’ Natural Boundaries

• Partition the design at
“latency-insensitive”
interfaces (NoCs, AXI, etc)

25

Exploting SoCs’ Natural Boundaries

• Partition the design at
“latency-insensitive”
interfaces (NoCs, AXI, etc)

• Replace NoC wires with
MPI messages

26

HW
Design 1

HW
Design 2

WIRES

Exploting SoCs’ Natural Boundaries

• Partition the design at
“latency-insensitive”
interfaces (NoCs, AXI, etc)

• Replace NoC wires with
MPI messages

27

HW
Design 1

HW
Design 2

WIRES

Exploting SoCs’ Natural Boundaries

• Partition the design at
“latency-insensitive”
interfaces (NoCs, AXI, etc)

• Replace NoC wires with
MPI messages

28

HW
Design 1

HW
Design 2

WIRES

1 MPI
Message

1 MPI
Message

MPI Messages

MPI Process MPI Process

Methodology

• We use OpenPiton+Ariane→ chip sizes from 1x1 to 32x32 (1024 tiles)

• Testbench: Atomic synchronized token passing app

29

Methodology

• We use OpenPiton+Ariane → chip sizes from 1x1 to 32x32 (1024 tiles)

• Testbench: Atomic synchronized token passing app

• Simulators: Verilator and a “Big 3” RTL Simulator

• We use MareNostrum 4 Supercomputer with 100Gbs Network
• 1 Node has 48 cores

30

NoC Size 1x1 4x4 32x32

#MPI/Cores 2 17 1025

#Nodes 1 1 22

Metro-MPI Simulation Time Speedup

31

Superlinear
Speedups!!

Metro-MPI Simulated Cycles/sec

32

Metro-MPI Simulated Instruction/sec

33

We reach 2.7 MIPS
In RTL Simulation!

MPI Overhead

• Compute Ratio decreases as
the size of the simulated
design increases (#MPI
processes increases)

34

MPI Overhead

• Compute Ratio decreases as
the size of the simulated
design increases (#MPI
processes increases)

• MPI Receive increases (sync)

35

Metro-MPI vs Verilator Multithreading

• Verilator natively supports
acceleration with pthreads

• This speeds up simulation
by 4.2x and 5.5x, using as
many threads as tiles

• Metro-MPI outperforms
Verilator multithreading by
a further 5.64x and 9.29x

36

Metro-MPI vs Verilator Multithreading

• Verilator natively supports
acceleration with pthreads

• This speeds up simulation
by 4.2x and 5.5x, using as
many threads as tiles

• Metro-MPI outperforms
Verilator multithreading by
a further 5.64x and 9.29x

37

Night Regression Time & Energy results

• We fix the amount of work
(32 simulations of a 8x4
NoC Simulation) and
compare three options

• Metro-MPI outperforms in
Time by 2.06x and 2.59x

• Metro-MPI outperforms in
Energy by 2.52x and 2.90x

38

Night Regression Time & Energy results

• We fix the amount of work
(32 simulations of a 8x4
NoC Simulation) and
compare three options

• Metro-MPI outperforms in
Time by 2.06x and 2.59x

• Metro-MPI outperforms in
Energy by 2.52x and 2.90x

39

Night Regression Time & Energy results

• We fix the amount of work
(32 simulations of a 8x4
NoC Simulation) and
compare three options

• Metro-MPI outperforms in
Time by 2.06x and 2.59x

• Metro-MPI outperforms in
Energy by 2.52x and 2.90x

40

Metro-MPI at BSC

• Many projects at BSC working towards a heterogenous multi-core chip

• Metro-MPI has been successfully used in these projects to perform a
design space exploration of a 64 cores NoC

• Personally, I am using metro-MPI in my research, executing simulations
that takes several days and Millions of cycles

41

Metro-MPI at BSC

• Many projects at BSC working towards a heterogenous multi-core chip

• Metro-MPI has been successfully used in these projects to perform a
design space exploration of a 64 cores NoC

• Personally, I am using metro-MPI in my research, executing simulations
that takes several days and Millions of cycles

42

Metro-MPI at BSC

• Many projects at BSC working towards a heterogenous multi-core chip

• Metro-MPI has been successfully used in these projects to perform a
design space exploration of a 64 cores NoC

• Personally, I am using metro-MPI in my research, executing simulations
that takes several days and Millions of cycles

43

Future Work

• Metro-MPI is open-source and we are considering trying other multi-
core platforms

• We would like to perform the same experiments done with Verilator
with Commercial Simulator such as Synopsis VCS → license problem

• Metro-MPI could be automatically applied in some designs that show
repeated hardware blocks e.g. `a la Verilator multi-threaded`

• Try newer versions of Verilator v5 that supports the Verilog timing
model

44

Future Work

• Metro-MPI is open-source and we are considering trying other multi-
core platforms

• We would like to perform the same experiments done with Verilator
with Commercial Simulator such as Synopsis VCS → license problem

• Metro-MPI could be automatically applied in some designs that show
repeated hardware blocks e.g. `a la Verilator multi-threaded`

• Try newer versions of Verilator v5 that supports the Verilog timing
model

45

Conclusions

• General methodology that can be applied to multiple designs
• Exploiting natural boundaries (“latency-insensitive” interfaces)

46

Conclusions

• General methodology that can be applied to multiple designs
• Exploiting natural boundaries (“latency-insensitive” interfaces)

• Overcomes problems found in RTL Simulators:
• Binary size, ITLB and ICache MPKI

47

Conclusions

• General methodology that can be applied to multiple designs
• Exploiting natural boundaries (“latency-insensitive” interfaces)

• Overcomes problems found in RTL Simulators:
• Binary size, ITLB and ICache MPKI

• Exceptional scaling:
• Simulation scales up to 1024 tiles

• In simulation throughput, reaching 2.7 MIPS on a 1024 tile chip

• In simulation time speedup, up to 136x with respect to sequential
48

Metro-MPI
Open Source at:

github.com/metro-mpi

guillem.lopez@bsc.esOSCAR 2024

Acknowledgments

Evaluation PMU: IPC

50

• Comparison stats gem5 vs
PMU:
• Every 1k cycles, compare

IPC stats (y-axis)
• X-axis Time in ms

• Executed three sorting
algorithms
• 3k elements for QuickSort
• 30k elements rest

• Separated with a sleep
call of 1 ms

Evaluation PMU: IPC

51

QuickSort

SelectionSort

BubleSort

QuickSort

SelectionSort

BubleSort

• Comparison stats gem5 vs
PMU:
• Every 1k cycles, compare

IPC stats (y-axis)
• X-axis Time in ms

• Executed three sorting
algorithms
• 3k elements for QuickSort
• 30k elements rest

• Separated with a sleep
call of 1 ms

Evaluation PMU: IPC

52

Sleep 1ms

• Comparison stats gem5 vs
PMU:
• Every 1k cycles, compare

IPC stats (y-axis)
• X-axis Time in ms

• Executed three sorting
algorithms
• 3k elements for QuickSort
• 30k elements rest

• Separated with a sleep
call of 1 ms

Evaluation NVDLA: GoogleNet

53

• Evaluation of NVDLA
performed by executing
traces of real applications
provided by NVIDIA

• Parameters for the design
space exploration (x-axis)

• Performance (y-axis) is
normalized to an ideal 1
cycle memory latency

Evaluation NVDLA: GoogleNet

54

• Evaluation of NVDLA
performed by executing
traces of real applications
provided by NVIDIA

• Parameters for the design
space exploration (x-axis)

• Performance (y-axis) is
normalized to an ideal 1
cycle memory latency

Evaluation NVDLA: GoogleNet

55

• Evaluation of NVDLA
performed by executing
traces of real applications
provided by NVIDIA

• Parameters for the design
space exploration (x-axis)

• Performance (y-axis) is
normalized to an ideal 1
cycle memory latency

Evaluation NVDLA: GoogleNet

56

• Using several memory
configurations

• Different number of
maximum requests from
NVDLA to main memory

• Different number of nvdla
in the system: 1, 2 and 4
nvdla’s configurations

Evaluation NVDLA: GoogleNet

57

• Using several memory
configurations

• Different number of
maximum requests from
NVDLA to main memory

• Different number of nvdla
in the system: 1, 2 and 4
nvdla’s configurations

Evaluation NVDLA: GoogleNet

58

• Using several memory
configurations

• Different number of
maximum requests from
NVDLA to main memory

• Different number of nvdla
in the system: 1, 2 and 4
nvdla’s configurations

4 nvdla

2 nvdla

1 nvdla

Evaluation NVDLA: GoogleNet

59

• Maximum number of
requests affects dramatically

• Some memory configs
cannot deliver enough bw
for 2 and 4 nvdlas

• We recommend HBM or
GDDR5 when more than 2
NVDLAs are in the system

Evaluation NVDLA: GoogleNet

60

• Maximum number of
requests affects dramatically

• Some memory configs
cannot deliver enough bw
for 2 and 4 nvdlas

• We recommend HBM or
GDDR5 when more than 2
NVDLAs are in the system

Metro-MPI Simulation Time Speedup

61

Why are we
going faster than

the ideal?

Metro-MPI Simulation Time Speedup

62

Why are we
going faster than

the ideal?

- We did a Profiling Analysis
- ITLB Misses per 1k instr (MPKI)
- Icache Misses per 1k instr (MPKI)
- IPC

Metro-MPI Simulation Time Speedup

63

Why are we
going faster than

the ideal?

Metro-MPI Simulation Time Speedup

64

Why are we
going faster than

the ideal?

Metro-MPI Big-3 Performance

• In a system with 8 cores

• Big 3 Simulator scales
almost linearly

• Big 3 is already using
threads in the default
(non metro-MPI version)

65

Metro-MPI Big-3 Performance

• In a system with 8 cores

• Big 3 Simulator scales
almost linearly

• Big 3 is already using
threads in the default
(non metro-MPI version)

66

Multi Tile Granule Performance

• Slow-down in simulation
time

• Consequently, KIPS also
slow downs

• But, work per core
increases, hence to run
regressions is better ☺

67

Multi Tile Granule Performance

• Slow-down in simulation
time

• Consequently, KIPS also
slow down

• But, work per core
increases, hence to run
regressions is better ☺

68

Multi Tile Granule Performance

• Slow-down in simulation
time

• Consequently, KIPS also
slow downs

• But, work per core
increases, hence to run
regressions is better ☺

69

MPI Overhead (Multi Tile)

• Multi-Tile granules (MTG) help
to increase the compute ratio

70

256 Tiles

1x1 STG

2x1 MTG

2x2 MTG

MPI Overhead (Multi Tile)

• Multi-Tile granules (MTG) help
to increase the compute ratio

• MPI Receive decreases as the
number of MPI processes is
reduced

71

256 Tiles

1x1 STG

2x1 MTG

2x2 MTG

	Slide 1: Past, Present and Future of Designing, Integrating and Simulating RTL Models
	Slide 2: Motivation
	Slide 3: Motivation
	Slide 4: Motivation
	Slide 5: Motivation
	Slide 6: Motivation
	Slide 7: Outline
	Slide 8: Gem5+RTL Objectives
	Slide 9: Gem5+RTL Objectives
	Slide 10: Gem5+RTL Objectives
	Slide 11: Framework Design
	Slide 12: Framework Design
	Slide 13: Framework Design
	Slide 14: Connectivity Examples
	Slide 15: Connectivity Examples
	Slide 16: Connectivity Examples
	Slide 17: Gem5+RTL https://gitlab.bsc.es/glopez/gem5-rtl
	Slide 18: Outline
	Slide 19: Motivation: RTL Simulation Performance
	Slide 20: Motivation: RTL Simulation Performance
	Slide 21: Motivation: RTL Simulation Performance
	Slide 22: NoC RTL-Simulation with MPI
	Slide 23: NoC RTL-Simulation with MPI
	Slide 24: Exploting SoCs’ Natural Boundaries
	Slide 25: Exploting SoCs’ Natural Boundaries
	Slide 26: Exploting SoCs’ Natural Boundaries
	Slide 27: Exploting SoCs’ Natural Boundaries
	Slide 28: Exploting SoCs’ Natural Boundaries
	Slide 29: Methodology
	Slide 30: Methodology
	Slide 31: Metro-MPI Simulation Time Speedup
	Slide 32: Metro-MPI Simulated Cycles/sec
	Slide 33: Metro-MPI Simulated Instruction/sec
	Slide 34: MPI Overhead
	Slide 35: MPI Overhead
	Slide 36: Metro-MPI vs Verilator Multithreading
	Slide 37: Metro-MPI vs Verilator Multithreading
	Slide 38: Night Regression Time & Energy results
	Slide 39: Night Regression Time & Energy results
	Slide 40: Night Regression Time & Energy results
	Slide 41: Metro-MPI at BSC
	Slide 42: Metro-MPI at BSC
	Slide 43: Metro-MPI at BSC
	Slide 44: Future Work
	Slide 45: Future Work
	Slide 46: Conclusions
	Slide 47: Conclusions
	Slide 48: Conclusions
	Slide 49: Metro-MPI Open Source at: github.com/metro-mpi
	Slide 50: Evaluation PMU: IPC
	Slide 51: Evaluation PMU: IPC
	Slide 52: Evaluation PMU: IPC
	Slide 53: Evaluation NVDLA: GoogleNet
	Slide 54: Evaluation NVDLA: GoogleNet
	Slide 55: Evaluation NVDLA: GoogleNet
	Slide 56: Evaluation NVDLA: GoogleNet
	Slide 57: Evaluation NVDLA: GoogleNet
	Slide 58: Evaluation NVDLA: GoogleNet
	Slide 59: Evaluation NVDLA: GoogleNet
	Slide 60: Evaluation NVDLA: GoogleNet
	Slide 61: Metro-MPI Simulation Time Speedup
	Slide 62: Metro-MPI Simulation Time Speedup
	Slide 63: Metro-MPI Simulation Time Speedup
	Slide 64: Metro-MPI Simulation Time Speedup
	Slide 65: Metro-MPI Big-3 Performance
	Slide 66: Metro-MPI Big-3 Performance
	Slide 67: Multi Tile Granule Performance
	Slide 68: Multi Tile Granule Performance
	Slide 69: Multi Tile Granule Performance
	Slide 70: MPI Overhead (Multi Tile)
	Slide 71: MPI Overhead (Multi Tile)

