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Motivation

• Boom in fabricating new hw

• Heterogeneous hardware on the same SoC requires complex 
integration and verification processes

• Improve the tools to verify large-scale hardware designs!
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Outline

•Gem5+RTL: A Full-System RTL Simulation Infrastructure

• Fast Behavioural RTL Simulation of 10B Transistor SoC 

Designs with Metro-MPI
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Gem5+RTL Objectives

• Framework that enables easy integration of existing RTL hardware 
blocks within a SoC for full-system simulations

• Deliver a comprehensive hardware/software ecosystem where all the 
main components of the SoC are present with a complete software stack

• Enable testing the implemented functionality of these hardware blocks 
and also, the expected performance they will provide on an existing SoC
design
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Framework Design
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1. We use Verilator and GHDL to obtain a C++ model from an RTL 
model written in Verilog/SystemVerilog and VHDL

2. We provide a wrapper to interact with it and gem5. Then, the 
wrapper and the C++ model are combined into a shared library

3. In gem5, a generic framework is provided to ease the integration of 
a wide range of potential hardware designs: generic RTLObject class
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Accelerator Use Case
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PMU Use Case



Gem5+RTL
https://gitlab.bsc.es/glopez/gem5-rtl

guillem.lopez@bsc.es
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Motivation: RTL Simulation Performance
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• SoCs today are reaching 
10B+ transistors in scale

Name #Cores #Billions
Transistors

Apple M2 8-12 20 - 67

AWS Graviton 3 64 55

Esperanto 
ET-SoC-1

1024 24
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NoC RTL-Simulation with MPI

NoC 3x3
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Methodology

• We use OpenPiton+Ariane → chip sizes from 1x1 to 32x32 (1024 tiles)

• Testbench: Atomic synchronized token passing app

• Simulators: Verilator and a “Big 3” RTL Simulator

• We use MareNostrum 4 Supercomputer with 100Gbs Network
• 1 Node has 48 cores
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NoC Size 1x1 4x4 32x32

#MPI/Cores 2 17 1025

#Nodes 1 1 22



Metro-MPI Simulation Time Speedup
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Superlinear
Speedups!!



Metro-MPI Simulated Cycles/sec
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Metro-MPI Simulated Instruction/sec
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We reach 2.7 MIPS
In RTL Simulation!



MPI Overhead

• Compute Ratio decreases as 
the size of the simulated 
design increases (#MPI 
processes increases)
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MPI Overhead

• Compute Ratio decreases as 
the size of the simulated 
design increases (#MPI 
processes increases)

• MPI Receive increases (sync)
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Metro-MPI vs Verilator Multithreading

• Verilator natively supports 
acceleration with pthreads

• This speeds up simulation 
by 4.2x and 5.5x, using as 
many threads as tiles

• Metro-MPI outperforms 
Verilator multithreading by 
a further 5.64x and 9.29x
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Night Regression Time & Energy results

• We fix the amount of work 
(32 simulations of a 8x4 
NoC Simulation) and 
compare three options

• Metro-MPI outperforms in 
Time by 2.06x and 2.59x

• Metro-MPI outperforms in 
Energy by 2.52x and 2.90x
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Metro-MPI at BSC

• Many projects at BSC working towards a heterogenous multi-core chip

• Metro-MPI has been successfully used in these projects to perform a 
design space exploration of a 64 cores NoC

• Personally, I am using metro-MPI in my research, executing simulations 
that takes several days and Millions of cycles
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Future Work

• Metro-MPI is open-source and we are considering trying other multi-
core platforms

• We would like to perform the same experiments done with Verilator
with Commercial Simulator such as Synopsis VCS → license problem

• Metro-MPI could be automatically applied in some designs that show 
repeated hardware blocks e.g. `a la Verilator multi-threaded`

• Try newer versions of Verilator v5 that supports the Verilog timing 
model 
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Conclusions

• General methodology that can be applied to multiple designs
• Exploiting natural boundaries (“latency-insensitive” interfaces)

• Overcomes problems found in RTL Simulators: 
• Binary size, ITLB and ICache MPKI

• Exceptional scaling:
• Simulation scales up to 1024 tiles

• In simulation throughput, reaching 2.7 MIPS on a 1024 tile chip

• In simulation time speedup, up to 136x with respect to sequential
48



Metro-MPI
Open Source at:

github.com/metro-mpi

guillem.lopez@bsc.esOSCAR 2024
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• Comparison stats gem5 vs 
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• Every 1k cycles, compare 

IPC stats (y-axis)
• X-axis Time in ms

• Executed three sorting 
algorithms
• 3k elements for QuickSort
• 30k elements rest

• Separated with a sleep     
call of 1 ms
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traces of real applications 
provided by NVIDIA

• Parameters for the design 
space exploration (x-axis)

• Performance (y-axis) is 
normalized to an ideal 1 
cycle memory latency
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requests affects dramatically

• Some memory configs
cannot deliver enough bw
for 2 and 4 nvdlas

• We recommend HBM or 
GDDR5 when more than 2 
NVDLAs are in the system
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Why are we 
going faster than 

the ideal?

- We did a Profiling Analysis
- ITLB Misses per 1k instr (MPKI)
- Icache Misses per 1k instr (MPKI)
- IPC
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Metro-MPI Big-3 Performance

• In a system with 8 cores

• Big 3 Simulator scales 
almost linearly

• Big 3 is already using 
threads in the default 
(non metro-MPI version)
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Multi Tile Granule Performance

• Slow-down in simulation 
time

• Consequently, KIPS also 
slow downs

• But, work per core 
increases, hence to run 
regressions is better ☺
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MPI Overhead (Multi Tile)

• Multi-Tile granules (MTG) help 
to increase the compute ratio
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MPI Overhead (Multi Tile)

• Multi-Tile granules (MTG) help 
to increase the compute ratio

• MPI Receive decreases as the 
number of MPI processes is 
reduced
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