Towards Open Source Platforms for Wearable Health Monitoring

Nuzhat Yamin, Dina Hussein, Ganapati Bhat*

OSCAR Workshop

June 18, 2023

Mobile Devices to Wearable Devices

- Impressive progress, but we still need to
 - Carry a bulky device, re-charge everyday, rely on primitive interaction, ...
- Towards self-powered wearable systems that can understand the user

Health Monitoring using Wearable Devices

- 15% of the world's population lives with a disability
- 110-190 million people face significant difficulties in functioning
- Intl. Parkinson and Movement Disorders Society Task Force on Technology:
 - Low-cost and small form-factor wearable devices offer great potential
 - Enabled by advances in low power sensors, processors, communications

Wearable Health Monitoring

Challenges of Wearable Health Technology

- Widespread adoption hindered by adaptation & technology challenges
 - Comfort: Awkward to wear or carry a device
 - **Compliance:** Stop using technology due to maintanance
 - Applications: No killer applications
- Is there an evidence for the need?

Parkinson's Disease Digital Biomarker DREAM Challenge

- Smartphones used in PD Dream Challenge
- But, they are not appropriate

ENABLED BY

HARVARD

- Some patients cannot even carry them
- Cannot provide real-time guarantees (e.g., sampling rate)
- Large power consumption & charging requirements

Major Barriers to Wearable Technology

- We study major barriers to wearable technology
- **Classify challenges into two categories**
- Adaptation challenges
 - Social and user-specific barriers to adoption —
- **Technical challenges**
 - Barriers faced by designers of wearable platforms ____

Flexible and Stretchable Devices

Closed-Loop Optimal Energy Allocation

Adaptation Challenges and Potential Solutions

OpenHealth

An open-source HW-SW platform released to public

- We propose the OpenHealth platform
- Aim to provide a common compatible HW/SW platform
 - Address adaptation and technology challenges
 - Monitor clinically relevant technology-based objective measures (TOM)
 - Current release: <u>https://sites.google.com/view/openhealth-wearable-health/home</u>

nHealth

e lab

OpenHealth Components

Base hardware

- Processing unit
- Texas instruments CC2650/CC2652
- Sensor unit
- MPU-9250 motion sensor
- Electromyography
- Stretch sensor
- Energy harvesting with photovoltaic cells

Base software

- Thread-based real-time operating system
- Sensor API through I2C and SPI
- Bluetooth and Zigbee protocols

Optimal energy Wearable harvesting & management stretch sensor

Application Domains for OpenHealth

- We provide two example applications with OpenHealth
- Human activity recognition
 - 22 users and 8 activities
 - Provide sensor data, classifier, and application
 - 12.5 mW consumption for each activity

Gesture recognition

- Five hand gestures using motion sensor
- Useful in rehabilitation applications
- We provide C-code for neural network classifier
- 10 mW power consumption for each classification

Forward

Right

Left

Wave

Accelerator for HAR

- We also provide two hardware accelerators for HAR
- Baseline Design = 1.353 mm²
- Two-level Design = 1.357 mm²

11

- Only 0.3% larger than the baseline design

Ganapati Bhat et al. An Ultra-Low Energy Human Activity Recognition Accelerator for Wearable Health Applications. ACM Trans. Embed. Comput. Syst., 2019

Conclusion

- Mobile and wearable devices offer great potential
 - Health monitoring, activity tracking, gesture-based control
- Presented our work on wearable IoT devices
 - OpenHealth framework with hardware and software
 - Problem formulation for future challenges in wearable design

