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What are Future System ReQs?

One example — recent DOE CFP Requirements:

100+ exaFLOPSs, up to 20 GHz frequency, < 20 MW power

But Moore’s Law continues to fade ...

42 Years of Microprocessor Trend Data
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Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labante, O. Shacham. K. Olukatun, L. Hammond, and C. Batten
New plot and data collected for 2010-2017 by K. Rupp



Why Is This Important?

Faster hardware

3 ¥

Improved algorithms
(e.g., deeper DNNSs)

Larger Datasets

Moore’s Law has enabled a virtuous cycle of progress in many fields

... slowing of Moore’s Law also threatens progress

Modern apps have ravenous (exponential) compute, power needs
Must co-optimize for performance and power 3
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What Is Needed?

= Need disruptive, cross-layer changes to meet future sys. regs.

Co-design arch, runtime, OS, compiler, network, batch sched.
For both power and performance (and maybe other factors)
Increasingly important as transistor sizes shrink
Typically sim. & modeling tools enable early-stage design
exploration
Last OSCAR talk: scalably enable accurate co-design for performance
But what about power?

Need credible, open-source modeling infrastructure for both



o

Power Modeling State-of-the-Art

* 5 broad types of power models:
1. Extrapolate first-principal models (e.g., CACTI, McPAT)
*  Were highly accurate, still widely used ... but not updated in 8+ years

2. Empirical measurement-based models (e.g., AccelWattch)
«  Difficult to generalize beyond specific devices they are measured on
«  Significant accuracy decrease for even minor perturbations

3. ML-based models
«  Tremendous potential, but accuracy often lacking for previously unseen devices

4. Tools based on tape-out values
«  Time consuming, expensive, can only happen later in design process

5. Low-level Spice models
«  Accurate, but often require proprietary information, hard to scale to large systems

Early-stage power model tools divided, arch-specific, out-of-da&te



What Can We Do?

Additional Challenges:
« Each power modeling approach may be “best”
« Often certain power models easier to integrate with certain simulators

Insight: decouple “best” power model from simulator integration
« Don’t pick which power model is the right one
« Abstract away how simulators integration - plug-and-play power models

Vision: make power modeling as easy as performance modeling

Created prototype with gem5’s MinorCPU
« Extending to other components (e.g., GPU, network, main mem)
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Why gem5?

« Widely used, popular, open-source simulator
 Models CPUs, GPUs, and accelerators in a single ecosystem
« Supports many layers of the computing stack — enables deep co-design

. through C++/Python modules
« Significant software engineering effort

« Validated, cycle-level fidelity across a range of components

* Rigorous functional regression testing ensures stability

On-going work: performance regression testing

« Stable interfaces reduces churn



0 Current Power Modeling in gem5

 Power modeling API takes user-defined equations as strings
« Simulation statistics passed in as variables (e.g., cache hits)

# Wire up some example power models to the CPUs
for cpu in root.system.descendants():
if not isinstance(cpu, m5.objects.BaseCPU):

continue

cpu.power_state.default _state =
cpu.power_model = CpuPowerModel(cpu.path())

class CpuPowerOn(MathExprPowerModel):
def __init__(self, cpu_path, **kwargs):
super().__init__(**kwargs)

. 3pA per cache miss

1 convert to Watt

.format (cpu_path, cpu_path)
)
self.st =




Current Power Modeling in gem5 (Cont.)

 Power modeling API takes user-defined equations as strings
Simulation statistics passed in as variables (e.g., cache hits)

Limitation: Difficult for users to express complex functions, novel models

« Partial McPAT integration
But not updated in many years ...

« Partial DVFS & thermal support

 Some ISAs have better power support (ARM [Reddy PATMOS17])
But also not updated in many years ...
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Extending the Power Modeling AP|

How should we extend the
power modeling API?

Give the user an interface (2 ) (5e) (mo0) (me)
which provides fine-grained [ I ]

customization
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0 Extending the Power Modeling API (Cont.)

System Power

...@...

* Hierarchical system of components

* Overall power model: sum of components

. Separate simulator, power model = ) el
« Break model into 3 Key Pieces: l ove) (7)) (ot

 Simulator organizes hardware into sub- [ ]

groups (e.g., known good models) e
 Power model(s): express static, dynamic =3

power per component o 1]
* Interface: pick between power models for Mmm'f;mfw

a given component T e B

o) 1




0 Putting It All Together

 Uses gem5’s Python front-end
« Can change power model choice as easily as cache size (no recompile)

* Richer way to add support, easy to modify
« Could use different power models for different components

« Architecture-agnostic
 New power model “just” provides static, dynamic power values per component
« Simulator handles rest of integration (plug-and-play)

« Can integrate and compare/validate different power models
« EXxisting power models (e.g., McPAT)
* Pre-built power models
« Custom power models (e.g., in-house)

14



Validation

Created power model for gem5’s MinorCPU
Integrated this model with gem3’s emitted stats

Validation: different static, dynamic power values properly impact
predicted power at different levels of hierarchy

Ongoing: extend to additional components

15
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Conclusion

Future systems need to balance power, performance even more

But power models are out-of-date, brittle, or proprietary

Insight: decouple simulator power model integration, power model
« Simulator devs: focus on how power should be integrated ...
« ... without worrying about specifics of underlying power model

Potential Benefits:

« Easily support & simple to change between many different power models
« Better maintainability — separate power model and simulator design

« Easier to integrate new power models (e.g., for novel accelerators)

« Make power modeling as easy as performance modeling

17
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