
Designing Generalizable Power Models for Open-Source 

Architecture Simulators

Alex Smith*, Bobby Bruce†, Jason Lowe-Power†, and Matthew D. Sinclair* 

*University of Wisconsin-Madison, †University of California - Davis

sinclair@cs.wisc.edu

mailto:sinclair@cs.wisc.edu


2

What are Future System Reqs?

• One example – recent DOE CFP Requirements:

• 100+ exaFLOPs, up to 20 GHz frequency, < 20 MW power

• But Moore’s Law continues to fade …



Why Is This Important?

3

Faster hardware

Larger Datasets
Improved algorithms 

(e.g., deeper DNNs)

Moore’s Law has enabled a virtuous cycle of progress in many fields

… slowing of Moore’s Law also threatens progress

Must co-optimize for performance and power

Modern apps have ravenous (exponential) compute, power needs



What Is Needed?

⇒ Need disruptive, cross-layer changes to meet future sys. reqs.

• Co-design arch, runtime, OS, compiler, network, batch sched.

• For both power and performance (and maybe other factors)

• Increasingly important as transistor sizes shrink

• Typically sim. & modeling tools enable early-stage design 
exploration

• Last OSCAR talk: scalably enable accurate co-design for performance

• But what about power?

• Need credible, open-source modeling infrastructure for both

4



Power Modeling State-of-the-Art
• 5 broad types of power models:

1. Extrapolate first-principal models (e.g., CACTI, McPAT)

• Were highly accurate, still widely used … but not updated in 8+ years

2. Empirical measurement-based models (e.g., AccelWattch)

• Difficult to generalize beyond specific devices they are measured on

• Significant accuracy decrease for even minor perturbations

3. ML-based models

• Tremendous potential, but accuracy often lacking for previously unseen devices

4. Tools based on tape-out values

• Time consuming, expensive, can only happen later in design process

5. Low-level Spice models

• Accurate, but often require proprietary information, hard to scale to large systems

5

Early-stage power model tools divided, arch-specific, out-of-date



What Can We Do?

• Additional Challenges:

• Each power modeling approach may be “best”

• Often certain power models easier to integrate with certain simulators

• Insight: decouple “best” power model from simulator integration

• Don’t pick which power model is the right one

• Abstract away how simulators integration → plug-and-play power models

• Vision: make power modeling as easy as performance modeling

• Created prototype with gem5’s MinorCPU

• Extending to other components (e.g., GPU, network, main mem)

6Today’s Focus: integration with gem5



Outline

• Motivation

• Background

• Design

• Conclusion & Future Work

7



Why gem5?

• Widely used, popular, open-source simulator

• Models CPUs, GPUs, and accelerators in a single ecosystem

• Supports many layers of the computing stack – enables deep co-design

• Extensible through C++/Python modules

• Significant software engineering effort

• Validated, cycle-level fidelity across a range of components

• Rigorous functional regression testing ensures stability

• On-going work: performance regression testing

• Stable interfaces reduces churn

8



Current Power Modeling in gem5
• Power modeling API takes user-defined equations as strings

• Simulation statistics passed in as variables (e.g., cache hits)

9



Current Power Modeling in gem5 (Cont.)

10

• Power modeling API takes user-defined equations as strings

• Simulation statistics passed in as variables (e.g., cache hits)

• Limitation: Difficult for users to express complex functions, novel models

• Partial McPAT integration

• But not updated in many years …

• Partial DVFS & thermal support

• Some ISAs have better power support (ARM [Reddy PATMOS‘17])

• But also not updated in many years …

Foundation to build off/learn from



Outline

• Motivation

• Background

• Design

• Conclusion & Future Work

11



Extending the Power Modeling API

• How should we extend the 
power modeling API?

• Give the user an interface 
which provides fine-grained 
customization

12



Extending the Power Modeling API (Cont.)

• Hierarchical system of components

• Overall power model: sum of components

• Separate simulator, power model

• Break model into 3 Key Pieces:

• Simulator organizes hardware into sub-
groups (e.g., known good models)

• Power model(s): express static, dynamic 
power per component

• Interface: pick between power models for 
a given component

13



Putting It All Together
• Uses gem5’s Python front-end

• Can change power model choice as easily as cache size (no recompile)

• Richer way to add support, easy to modify

• Could use different power models for different components

• Architecture-agnostic

• New power model “just” provides static, dynamic power values per component

• Simulator handles rest of integration (plug-and-play)

• Can integrate and compare/validate different power models

• Existing power models (e.g., McPAT)

• Pre-built power models

• Custom power models (e.g., in-house)
14



Validation

• Created power model for gem5’s MinorCPU

• Integrated this model with gem5’s emitted stats

• Validation: different static, dynamic power values properly impact 
predicted power at different levels of hierarchy

• Ongoing: extend to additional components

15



Outline

• Motivation

• Background

• Design

• Conclusion & Future Work

16



Conclusion
• Future systems need to balance power, performance even more

• But power models are out-of-date, brittle, or proprietary

• Insight: decouple simulator power model integration, power model

• Simulator devs: focus on how power should be integrated …

• … without worrying about specifics of underlying power model

• Potential Benefits:

• Easily support & simple to change between many different power models

• Better maintainability – separate power model and simulator design

• Easier to integrate new power models (e.g., for novel accelerators)

• Make power modeling as easy as performance modeling
17


	Slide 1
	Slide 2: What are Future System Reqs?
	Slide 3: Why Is This Important?
	Slide 4: What Is Needed?
	Slide 5: Power Modeling State-of-the-Art
	Slide 6: What Can We Do?
	Slide 7: Outline
	Slide 8: Why gem5?
	Slide 9: Current Power Modeling in gem5
	Slide 10: Current Power Modeling in gem5 (Cont.)
	Slide 11: Outline
	Slide 12: Extending the Power Modeling API
	Slide 13: Extending the Power Modeling API (Cont.)
	Slide 14: Putting It All Together
	Slide 15: Validation
	Slide 16: Outline
	Slide 17: Conclusion

