
SODA
Synthesizer:

Status &
Updates

Nicolas Bohm Agostini, Ankur Limaye, Reece Neff,

Varshika Mirtinti, Claudio Barone,

Vito Giovanni Castellana, Marco Minutoli,

Joseph Manzano, Antonino Tumeo,

Giovanni Gozzi, Michele Fiorito,

Serena Curzel and Fabrizio Ferrandi

June 30, 2024

2

Motivations

• Data science algorithms, approaches, and frameworks are
quickly evolving

• Domain-specific accelerators are the only possible
approach to keep increasing performance in tight
constraints

• Existing accelerators start from specific models (i.e., mostly
deep neural networks) or only try to accelerate specific
computational patterns coming from high-level frameworks

• Designing hardware by hand is complex and time-
consuming

• Depending on the application, a designer may want to
explore performance, area, energy, accuracy, and more…

• Need tools to quickly transition from formulation of an
algorithm to the accelerator implementation and
explore the accelerator design along different
dimensions

LeNet architecture from the original paper

3

SODA Synthesizer: Overview

• A modular, multi-level, interoperable, extensible, open-
source hardware compiler from high-level
programming frameworks to silicon

• Compiler-based frontend, leveraging the MultiLevel
Intermediate Representation (MLIR)

• Compiler-based backend, leveraging state-of-the-art
High-Level Synthesis (HLS) techniques

• Generates synthesizable Verilog for a variety of targets,
from Field Programmable Gate Arrays (FPGAs) to
Application Specific Integrated Circuits (ASICs)

• Optimizations at all levels are performed as compiler
optimization passes

Translate to MLIR IR

Backend:
HLS

Frontend:
SODA-OPT

Synthesizer

Design Space
Exploration

Templates

Components

FPGA or ASIC Targets

Constraints

Resource Library

Metrics

High-Level
Framework ML Model

Chip Design

DSL

Evaluation

Executable

Processor

LLVM Tools

[M. Minutoli, V. G. Castellana, C. Tan, J. Manzano, V. Amatya, A.
Tumeo, D. Brooks, G-Y. Wei: SODA: a New Synthesis Infrastructure
for Agile Hardware Design of Machine Learning Accelerators. ICCAD
2020: 98:1-98:7]

[J. Zhang, N. Bohm Agostini, S. Song, C. Tan, A. Limaye, V. Amatya,
J. Manzano, M. Minutoli, V. G. Castellana, A. Tumeo, G-Y. Wei, D.
Brooks: Towards Automatic and Agile AI/ML Accelerator Design with
End-to-End Synthesis. ASAP 2021: 218-225]

[N. Bohm Agostini, S. Curzel, J. Zhang, A. Limaye, C. Tan, V. Amatya, M. Minutoli, V.G. Castellana, J. Manzano, D. Brooks, G-Y. Wei, A.
Tumeo: Bridging Python to Silicon: The SODA Toolchain. IEEE Micro Magazine 2022 - Best Paper for 2022]
[N. Bohm Agostini, S. Curzel, V. Amatya, C. Tan, M. Minutoli, V. G. Castellana, J. Manzano, D. Kaeli, A. Tumeo : An MLIR-based Compiler
Flow for System-Level Design and Hardware Acceleration. ICCAD 22]
[Fabrizio Ferrandi, Vito Giovanni Castellana, Serena Curzel, Pietro Fezzardi, Michele Fiorito, Marco Lattuada, Marco Minutoli, Christian
Pilato, Antonino Tumeo: Invited: Bambu: an Open-Source Research Framework for the High-Level Synthesis of Complex Applications.
DAC 2021: 1327-1330]

4

SODA-OPT: Frontend and High-Level IR

• SODA-OPT: Search, Outline, Dispatch, Accelerate frontend
optimizer “generates” the SODA High-Level IR

• Employs and embraces the MLIR framework
§ MLIR: Multi-Level Intermediate Representation
§ Used in TensorFlow, TFRT, ONNX-MLIR, NPComp, others
§ Several architecture independent dialects (Linalg, Affine,

SCF) and optimizations

• Interfaces with high-level ML frameworks through MLIR “bridges”
(e.g., libraries, rewriters)

• Defines the SODA MLIR dialect and related compiler passes to:
§ Identify dataflow segments for hardware generation
§ Perform high-level optimizations (dataflow transformations,

data-level and instruction-level parallelism extraction)
§ Generate interfacing code and runtime calls for

microcontroller

SODA-OPT: System Overview

MLIR: Linalg and Affine Dialects

Search & Outline kernel functions

Isolate Kernel & Host Code

MLIR and SODA Dialects

Analysis &
high-level

optimization

Convert SODA
Operations to

Runtime

Low-Level IR Low-Level IR

MLIR Kernel
Code

MLIR Host
Code

Frontend: SODA-OPT

From: High-Level Framework

To: Backend To: LLVM Tools

Translate to LLVM IR

https://github.com/pnnl/soda-opt
[N. Bohm Agostini, S. Curzel, D. Kaeli, A. Tumeo: SODA-OPT an MLIR based flow for co-design and high-
level synthesis. CF 2022: 201-202 - Best Poster Award.]

[N. Bohm Agostini, S. Curzel, V. Amatya, C. Tan, M. Minutoli, V. G. Castellana, J. Manzano, D. Kaeli, A. Tumeo :
An MLIR-based Compiler Flow for System-Level Design and Hardware Acceleration. ICCAD 22]

5

SODA Synthesizer: HLS Backend

• The synthesizer backend take as input the properly
optimized low-level IR and generate the hardware
descriptions of the accelerators

• The HLS backend is PandA-Bambu, an open-
source state-state-of-the-art high-level synthesis
(HLS)
§ Key features: parallel accelerator designs, modular

HLS, and ASIC support
• The HLS backend provides automated testing and

verification of the generated designs

https://panda.dei.polimi.it

Analysis & low-level optimization

Template
based

synthesis

Allocation

Scheduling

Binding

Modules (RTL IR)

System (RTL IR)

Verilog and Testbench

Backend: HLS

From: Frontend

To: Chip Design

[Fabrizio Ferrandi, Vito Giovanni Castellana, Serena Curzel, Pietro Fezzardi, Michele Fiorito, Marco Lattuada, Marco Minutoli,
Christian Pilato, Antonino Tumeo: Invited: Bambu: an Open-Source Research Framework for the High-Level Synthesis of
Complex Applications. DAC 2021: 1327-1330]

6

SODA Synthesizer: ASIC targets
• The multi-level approach of the SODA toolchain allows

supporting different target technologies (FPGA, ASIC) for
actual generation of the designs

• SODA also supports ASIC targets:
• Commercial Tools (Synopsys Design Compiler with

Global Foundries 12/14 nm cells)
• OpenROAD suite (OpenPDK 45nm and ASAP 7nm

cell libraries)

• Backends’ resources characterized for the target technology:
• HLS Backend: Eucalyptus tool in Bambu, allows

driving hardware synthesis algorithms to optimize for
area, latency, etc.

• PandA-Bambu now also the opensource C frontend for
ZeroASIC’ SIliconCompiler
(https://www.siliconcompiler.com)

SODA characterization flow. The characterization flow can be
extended to synthesize HLS generated designs, or used to estimate
their area-latency-power profiles to drive the Design Space
Exploration engine

https://theopenroadproject.org

https://www.siliconcompiler.com/
https://theopenroadproject.org/

7

SODA-Synthesizer Progress: AXI4MLIR -
Host-Accelerator Communication

• Work in collaboration with University of Glasgow and Northeastern University
• AXI4MLIR implements host code generation to drive accelerators connected through an

AXI-Stream Interface
§ Provides Efficient Host-Accelerator execution flow

Accelerators in isolationBefore

Host-Accelerator communication for
predefined acceleratorsNow

Goal Host-Accelerator communication for
generated accelerators

[N. Bohm Agostini, J. Haris, P. Gibson, M. Jayaweera, N. Rubin, A. Tumeo, K. Abellan, J. Cano,
D. Kaeli. AXI4MLIR: User-Driven Automatic Host Code Generation for Custom AXI-Based
Accelerators. CGO 2024]

A
cc

el
er

at
or

Host CPU- Memory capacity
- Tile sizes
- Supported
 operations
- Opcodes

M
ain M

em
.

DMA
EngineAXI

FIFO/
Buffer

Mem.
Ctrl.

- Memory hierarchy
- Cache sizes

- DMA regions’
 sizes and locations

- Protocol

- Operations/algorithms
- Problem dimensions

Application

AXI Interconnect

8

AXI4MLIR: User-Driven Automatic Host Code
Generation for Custom AXI-Based Accelerators

• MLIR extensions to describe
custom accelerators with
arbitrary instructions

• Simple Host-Accelerator
communication abstraction
and AXI library implementation

• Currently implemented targeting
Systems-on-Chip developed in
with Xilinx Vitis, but generalizable
to other open-source prototyping
platforms

From: Werbrouck, F. “AXI Basics 1 - Introduction to AXI”. 2023.
Available at: https://support.xilinx.com/s/article/1053914

9

AXI4MLIR: User-Driven Automatic Host Code
Generation for Custom AXI-Based Accelerators

• MLIR extensions to describe
custom accelerators with
arbitrary instructions

• Simple Host-Accelerator
communication abstraction
and AXI library implementation

• Implements host code
generation to drive accelerators
connected through an AXI-
Stream Interface

AXI4MLIR Approach

Translate App to MLIR Code

Lower to linalg dialect

Convert named ops to
linalg.generic

Match and Annotate operations for Runtime Replacement

Parse accelerator and
host CPU description

Perform tiling for CPU and Accelerator

Perform host code transformations and Runtime Replacement

Translate host code to LLVM IR
and compile to binary file

Accelerator
Information

DMA Library

HL application
(TensorFlow, others)

1

3

6

5

4

2

From MLIR New Features
Legend

Host CPU
information

1

https://github.com/AXI4MLIR/axi4mlir

https://github.com/AXI4MLIR/axi4mlir

10

AXI4MLIR: Contributions

• An MLIR dialect to abstract send and recv transactions of data packages to
the accelerator
§ The accel dialect:

v send, recv, send_literal, send_dim, send_idx

• A communication library
§ Lightweight DMA Engine Library

• A way to describe custom instructions and how to use them in an MLIR
operation

<final offset> = accel.send(<memref or subview>, <dma offset>)

%sA=memref.subview %A[%i, %j][%tile_size_I, %tile_size_J][%c1, %c1]
call @copy_to_dma_region (%sA, offset=4bytes)
call @dma_start_send(size=%tile_size_I*%tile_size_J*4bytes, offset=4bytes)
call @dma_wait_send_completion()

11

AXI4MLIR Results

• Accelerating Matrix-Multiplication
Layers of TinyBERT language
model

• Presenting results for
• CPU execution
• Worst case (Nothing stationary)
• Best case (oracle selection of best

dataflow)

• Improves overall performance
due to use of the accelerator

• Improves improves performance
due to better orchestration of data

• Improves productivity

Runtime Performance of TinyBert FP32

SPARTA: High-Level Synthesis of Parallel
Multi-Threaded Accelerators

• A design methodology to perform High-Level Synthesis of Parallel Multi-Threaded Accelerators (SPARTA)
§ Improves our previous approach (SVELTO) for generating multithreaded parallel accelerators starting from OpenMP-

annotated shared memory codes in flexibility and performance
§ Uses a library of synthesizable components to directly map OpenMP runtime calls using LLVM
§ Implements a deflection-based fine-grained network-on-chip to connect accelerators to external memory
§ Supports memory-side caches

Template based mapping from
OpenMP codesBefore

New methodology that directly maps
OpenMP runtime calls through LLVMNow

Goal
Ability to map designs from high-level
languages through MLIR OpenMP
dialect

12

13

Bambu modified execution flow

• SPARTA modifies the execution flows of Bambu
• It implements the operation of the OpenMP runtime with ad-hoc hardware

components.

14

Bambu modified execution flow

• Performs argument promotion to the arguments passed to the OpenMP
runtime.

• It replicates the hardware creating multiple parallel cores.

15

SPARTA architecture

Cores are the base elements of the SPARTA
architecture:
• Each core implements a software function
• It has its own local memory (easy to access)
Multiple threads can execute on the same core:
when an external operation requires multiple cycles
the context active in the core changes increasing
the utilization of the hardware resources.

16

SPARTA architecture

Each parallel region can contain
multiple cores:
• SPARTA adds hardware for

arbitration and synchronization
(critical sections, barriers…)

• It allocates the variable shared
between the different cores like the
reduction variables.

17

SPARTA Results

30 June 2024Fabrizio Ferrandi / Politecnico di Milano

Speed up of SPARTA accelerators over the sequential baseline for the
Triangle Count benchmark with different cores and contexts

18

Public Software Repositories

• SODA-Opt: https://github.com/pnnl/sodaopt
• Panda-Bambu HLS: https://panda.dei.polimi.it (latest release 2023.10)
• OpenROAD: https://theopenroadproject.org (external tool, leveraged by SODA

toolchain to achieve end-to-end synthesis to ASIC in a fully opensource
compiler toolchain)

• SODA docker image: https://hub.docker.com/r/agostini01/soda

SODA-OPT SODA Docker ImagePandA-Bambu HLS (2023.10) SODA Tutorial: ISCA 2024
(tomorrow afternoon)

https://github.com/pnnl/sodaopt
https://panda.dei.polimi.it/
https://theopenroadproject.org/
https://hub.docker.com/r/agostini01/soda

19

Conclusions

• SODA implements an end-to-end (high-level frameworks to silicon) compiler-based
toolchain for the generation of domain-specific accelerators

§ Modular, multi-level, extensible
§ All based on interoperating open-source technologies
§ Targets reconfigurable architectures FPGAs as well ASICs
§ Considers system-level implications
§ Enables automated design space exploration and agile hardware design

• The SODA Synthesizer provides a no-human-in-the-loop toolchain from algorithmic
formulation to hardware implementation for complex workloads

• SODA is also a research tool to explore novel generation methodologies for domain-
specific systems

§ Discussed AXI4MLIR and SPARTA

20

Thank you!

• This work has been partially supported by:
§ The AT SCALE Initiative at PNNL
§ The ASCR Project Compiler Frameworks and Hardware Generators in Support of

Innovative US Government Designs
§ The Spoke 1 "FutureHPC & BigData” of the Italian Research Center on High-

Performance Computing, Big Data and Quantum Computing (ICSC) funded by MUR
Missione 4 - Next Generation EU (NGEU)

• Questions?
§ antonino.tumeo@pnnl.gov
§ fabrizio.ferrandi@polimi.it

mailto:Antonino.tumeo@pnnl.gov
mailto:Fabrizio.ferrandi@polimi.it

