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- Data science algorithms, approaches, and frameworks are LeNet architecture from the original paper
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« Domain-specific accelerators are the only possible
approach to keep increasing performance in tight
constraints

‘ Full connection Gaussian connections

« Existing accelerators start from specific models (i.e., mostly Convolutions Subsampling  Convolutions  Subsamping  Full connection
deep neural networks) or only try to accelerate specific
computational patterns coming from high-level frameworks

« Designing hardware by hand is complex and time-
consuming

« Depending on the application, a designer may want to
explore performance, area, energy, accuracy, and more...

* Need tools to quickly transition from formulation of an
algorithm to the accelerator implementation and
explore the accelerator design along different
dimensions
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e | * Generates synthesizable Verilog for a variety of targets,
T from Field Programmable Gate Arrays (FPGAs) to
| Exewfb'eé’ Application Specific Integrated Circuits (ASICs)

Processor
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e W[ TR .« A modular, multi-level, interoperable, extensible, open-
| . — . source hardware compiler from high-level
L reweewss @ 1 programming frameworks to silicon
(;;;;;;‘“’:::_i:::: __________ .« Compiler-based frontend, leveraging the MultiLevel
i Y sooesr —— | Intermediate Representation (MLIR)
| S 7 r___l____: e ~ « Compiler-based backend, leveraging state-of-the-art
f e W=l | 1 High-Level Synthesis (HLS) techniques
i Constraints | :____ ___J Components i o

* Optimizations at all levels are performed as compiler
[M. Minutoli, V. G. Castellana, C. Tan, J. Manzano, V. Amatya, A. optl m Izatl on passes

Tumeo, D. Brooks, G-Y. Wei: SODA: a New Synthesis Infrastructure
for Agile Hardware Design of Machine Learning Accelerators. ICCAD
2020: 98:1-98:7]

[N. Bohm Agostini, S. Curzel, J. Zhang, A. Limaye, C. Tan, V. Amatya, M. Minutoli, V.G. Castellana, J. Manzano, D. Brooks, G-Y. Wei, A.
[J. Zhang, N. Bohm Agostini, S. Song, C. Tan, A. Limaye, V. Amatya Tumeo: Bridging Python to Silicon: The SODA Toolchain. IEEE Micro Magazine 2022 - Best Paper for 2022]

J. Manzano. M. Minutoli. V. G. Castellana. A. Tumeo. G-Y. Wei. D. [N. Bohm Agostini, S. Curzel, V. Amatya, C. Tan, M. Minutoli, V. G. Castellana, J. Manzano, D. Kaeli, A. Tumeo : An MLIR-based Compiler
Brooks: Towards Automatic and Agile Al/ML Accelerator Design with Flow for System-Level Design and Hardware Acceleration. ICCAD 22] o o _ _ o
End-to-End Synthesis. ASAP 2021: 218-225] [Fabrizio Ferrandi, Vito Giovanni Castellana, Serena Curzel, Pietro Fezzardi, Michele Fiorito, Marco Lattuada, Marco Minutoli, Christian

Pilato, Antonino Tumeo: Invited: Bambu: an Open-Source Research Framework for the High-Level Synthesis of Complex Applications.
DAC 2021: 1327-1330]
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« SODA-OPT: Search, Outline, Dispatch, Accelerate frontend I:EEEE-E'*:LEVE'__FE;;_W}E:I

optimizer “generates” the SODA High-Level IR B f ————— |

| Frontend: SODA-OPT Sl

 Employs and embraces the MLIR framework i MLIR: Linalg and Affine Dialects i

» MLIR: Multi-Level Intermediate Representation | S *k — I

earc utline Kernel Tunctions |

= Used in TensorFlow, TFRT, ONNX-MLIR, NPComp, others i ¥ |

= Several architecture independent dialects (Linalg, Affine, i MR and S‘iDA Plalects i

SCF) and Opt|m|zat|0ns : Isolate Kernel & Host Code :

1 |

+ Interfaces with high-level ML frameworks through MLIR “bridges” i IRy o 1|

(e.q., libraries, rewriters) | Cide Ccfe :

[ |

« Defines the SODA MLIR dialect and related compiler passes to: 1| Nanevel || Oremtomsto i
I'l optimization untime

» |dentify dataflow segments for hardware generation | ° 7 - i :

= Perform high-level optimizations (dataflow transformations, i Low-Level R || Low-Level IR i

data-level and instruction-level parallelism extraction) | | | :

= Generate interfacing code and runtime calls for S |

microcontroller l————t———| S

[N. Bohm Agostini, S. Curzel, V. Amatya, C. Tan, M. Minutoli, V. G. Castellana, J. Manzano, D. Kaeli, A. Tumeo :
An MLIR-based Compiler Flow for System-Level Design and Hardware Acceleration. ICCAD 22] SODA-OPT: System Overview

[N. Bohm Agostini, S. Curzel, D. Kaeli, A. Tumeo: SODA-OPT an MLIR based flow for co-design and high-
level synthesis. CF 2022: 201-202 - Best Poster Award.]

https://github.com/pnnl/soda-opt




o

Pacific

Northwest  SODA Synthesizer: HLS Backend

* The synthesizer backend take as input the properly
optimized low-level IR and generate the hardware
descriptions of the accelerators

 The HLS backend is PandA-Bambu, an open-
source state-state-of-the-art high-level synthesis
(HLS)

» Key features: parallel accelerator designs, modular
HLS, and ASIC support

 The HLS backend provides automated testing and
verification of the generated designs

[Fabrizio Ferrandi, Vito Giovanni Castellana, Serena Curzel, Pietro Fezzardi, Michele Fiorito, Marco Lattuada, Marco Minutoli,
Christian Pilato, Antonino Tumeo: Invited: Bambu: an Open-Source Research Framework for the High-Level Synthesis of
Complex Applications. DAC 2021: 1327-1330]

Analysis & low-level optimization

Allocation

v
Scheduling based

Binding

v

Modules (RTL IR)

v

System (RTL IR)

Bambu H

https://[panda.dei.polimi.it
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MILANO 1863
» The multi-level approach of the SODA toolchain allows SODAlib

supporting different target technologies (FPGA, ASIC) for

actual generation of the designs : ‘ Youys ] |
« SODA also supports ASIC targets:
A

Gate Level

« Commercial Tools (Synopsys Design Compiler with
Global Foundries 12/14 nm cells)
*  OpenROAD suite (OpenPDK 45nm and ASAP 7nm

Verilog

cell libraries)
OpenROAD
(Floorplanning
« Backends’ resources characterized for the target technology: Placae':jent)
« HLS Backend: Eucalyptus tool in Bambu, allows
driving hardware synthesis algorithms to optimize for Area and Latency
area, latency, etc. Estimation

* PandA-Bambu now also the opensource C frontend for SODA characterization flow. The characterization flow can be

ZeroASIC’ SlliconCompiler extended to synthesize HLS generated designs, or used to estimate
(https://www.siliconcompiler.com) their area-latency-power profiles to drive the Design Space
Exploration engine

OpenROAD

https://theopenroadproject.org



https://www.siliconcompiler.com/
https://theopenroadproject.org/

7 SODA-Synthesizer Progress: AXI4MLIR -
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« Work in collaboration with University of Glasgow and Northeastern University

« AXIAMLIR implements host code generation to drive accelerators connected through an

AXI-Stream Interface

- Operations/algorithms

= Provides Efficient Host-Accelerator execution flow e e APP“C;“O” ’
e — | - Memory capacity Host CPU - Memory hierarchy
| | - Tile sizes - Cache sizes
Before | Accelerators in isolation | - Supported
| | operations AXI Interconnect
L o e J - Opcodes - Protocol
l_ _____________________________ | |
| L | g DMA | =
i Host-Accelerator communication for | e Engine Mem. | 5
. predefined accelerators | ® | Buffer gl | &
. | 2 - DMA regions’ 3
= sizes and locations | '
r—— === ——————= |
I . . |
Goal : Host-AcceIerator COmmunlCatlon for : [N. Bohm Agostini, J. Haris, P. Gibson, M. Jayaweera, N. Rubin, A. Tumeo, K. Abellan, J. Cano,
[ generated aCCG|erat0rS | D. Kaeli. AXI4MLIR: User-Driven Automatic Host Code Generation for Custom AX|-Based

I | Accelerators. CGO 2024]
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XILINX

« MLIR extensions to describe a rm 8 VlTIS

custom accelerators with
arbitrary instructions

« Simple Host-Accelerator
communhnication abstraction

Read
Address )

and AXI library implementation T ’
« Currently implemented targeting s | "
Systems-on-Chip developed in Master S

_ Daa 2

with Xilinx Vitis, but generalizable
to other open-source prototyping
platforms

From: Werbrouck, F. “AXI Basics 1 - Introduction to AXI”. 2023.
Available at: https://support.xilinx.com/s/article/1053914
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O (\ il Legend -———————— |
AXI4MLIR Approach L 1
HL appllcatlon

« MLIR extensions to describe (TensorFlow, Oihers)
custom accelerators with ( )

Translate App to MLIR Code

arbitrary instructions \ . N\ cciorator B Host cPU
. Slmple Host-AcceIerator Lower to 1inalq dialect Information information
communication abstraction > | g
and AXI library implementation Convert named ops to FEIES ety el
linalg.generic host CPU description

* Implements host code
generation to drive accelerators Match and Annotate operations for Runtime Replacement €

connected through an AXI-

Stream Interface Perform tiling for CPU and Accelerator

Perform host code transformations and Runtime Replacement (5

Translate host code to LLVM IR ,
[and compile to binary file DMA Library @

https://github.com/AXI4AMLIR/axi4mlir



https://github.com/AXI4MLIR/axi4mlir
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» An MLIR dialect to abstract il and transactions of data packages to
the accelerator

= The dialect:

¢ send, recv, send literal, send dim, send_idx

A communication library
= Lightweight DMA Engine Library

$sA=memref.subview 3%A[%1, %j][%tile size I, %tile size J][%cl, %cl]

call @copy_ to_dma region (%sA, offset=4bytes)

call @dma_start send(size=%tile size I*Stile size J*4bytes, offset=4bytes)
call @dma_wait_ send completion/()

[<final offset> = accel.send (<memref or subview>, <dma offset>)

« A way to describe custom instructions and how to use them in an MLIR
operation
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* Accelerating Matrix-Multiplication
LayerS Of TlnyBERT |anguage Runtime Performance of TinyBert FP32
model 1.0 - B Other Layers on CPU
, ) mEm Matmuls on CPU
* Presenting results for 0@ 08 Matmuls on ACC
« CPU execution =S
. . c o 0.6
» Worst case (Nothing stationary) o9 coe: 3.32% e 3.44
. N .. esze.: o. X
. ;Bjetstﬂcas)e (oracle selection of best g g 0.4 1 Matmuls: (14.69x)  Matmuls: (18.43x)
ataflow =
- 2 0.2-
* Improves overall performance
due to use of the accelerator 0.0-

CPU (MLIR) Ns-SquareTile AXI4AMLIR Best
Compilation Approach

Improves improves performance
due to better orchestration of data

Improves productivity
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« A design methodology to perform High-Level Synthesis of Parallel Multi-Threaded Accelerators (SPARTA)

» |Improves our previous approach (SVELTO) for generating multithreaded parallel accelerators starting from OpenMP-
annotated shared memory codes in flexibility and performance

= Uses a library of synthesizable components to directly map OpenMP runtime calls using LLVM
* Implements a deflection-based fine-grained network-on-chip to connect accelerators to external memory

= Supports memory-side caches SPARTA accelerator |Sequential computation |
Core 0 Core N
Q""" " " "> "> ">">"”"”"”"”"”/"""/"7/ /"7~ I
. Local CS Local Cs 9
Before | Template based mapping from | memory || manager ||| | memory || manager | |8
' OpenMP codes | - 3
I | Core 1 | Arbiter |Q_
L——————— e —— — = — = — — — — 4 Local cS | Thread synchronization | S
memory || manager | Shared memory |

T T | R
| New methodology that directly maps | NS
! . . Vb
| OpenMP runtime calls through LLVM | External memory

MmNy syee < L, T T T T T |

| Ability to map designs from high-level

|
languages trough MLIR OpenP
I

| dialect |

R A
L XX
[T\

X

X

X
X
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« SPARTA modifies the execution flows of Bambu
* It implements the operation of the OpenMP runtime with ad-hoc hardware

components.

.cl.cppl/.ll B]—)

'\

SPARTA
OpenMP library

_d—'-‘—"

HLS front-end

directives pre-processing

OpenMP pragmas pre-
processing

IR generation

—» calls to OpenMP runtime

static pointer analysis

pointer promotion

HLS back-end
thread ID propagation
OpenMP functions versioning

dead code elimination

alias analysis

allocation, scheduling, binding, |
RTL generation

‘ i
%, \ﬂi} N

POLITECNICO
MILANO 1863

standard Bambu flow
SPARTA contributions

.vi.vhd

A

13
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* Performs argument promotion to the arguments passed to the OpenMP
runtime.

* |t replicates the hardware creating multiple parallel cores.

.cl.cppl.ll ﬁ—) HLS front-end HLS back-end standard Bambu flow
SPARTA contributions
directives pre-processing thread ID propagation
OpenMP pragmas pre- OpenMP functions versioning
processing
dead code elimination
e IR generation — . .
SPARTA alias analysis
: —» calls to OpenMP runtime
OpenMP library : ' — -
e allocation, scheduling, binding, | s '51
static pointer analysis RTL generation
A

pointer promotion

14
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Cores are the base elements of the SPARTA
architecture:

« Each core implements a software function
* It has its own local memory (easy to access)

Multiple threads can execute on the same core:
when an external operation requires multiple cycles
the context active in the core changes increasing
the utilization of the hardware resources.

MILANO 1863

Core 0

Local
memory

CS
manager

15
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SPARTA accelerator |Sequential computation

Each parallel region can contain

multiple cores: Core 0 Core N
. Local CS Local CS Y
SPARTA adds hardware for ) memory manager memaory manager g
arbitration and synchronization o
(critical sections, barriers...) Core 1 Arbiter 3
. . o
e |t allocates the variable shared Local CS HIFAG S NONTINoD | =
between the different cores like the LlcallCob ) Lol Shared memory
reduction variables.
£ O O O i
NoC
YYYYV Y VY

External memory

16
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25

20

15

10

MILANO 1863
—&— 1 Context —&— 2 Contexts
4 Contexts 8 Contexts
4,—,,”_/_/_/_,_,:
__,_,_l—t +
-

2 4 g

Speed up of SPARTA accelerators over the sequential baseline for the
Triangle Count benchmark with different cores and contexts

Fabrizio Ferrandi / Politecnico di Milano 30 June 2024 17
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« SODA-Opt: https://github.com/pnnl/sodaopt
« Panda-Bambu HLS: https://panda.dei.polimi.it (latest release 2023.10)

* OpenROAD: https://theopenroadproject.org (external tool, leveraged by SODA
toolchain to achieve end-to-end synthesis to ASIC in a fully opensource
compiler toolchain)

« SODA docker image: https://hub.docker.com/r/agostini01/soda

[m] 7% =] OfE=l0 5 5]
. ILE: ',
E . - R gt 'EhEr;:.l_;- Eh- [He]
SODA-OPT PandA-Bambu HLS (2023.10) SODA Docker Image SODA Tutorial: ISCA 2024

(tomorrow afternoon)


https://github.com/pnnl/sodaopt
https://panda.dei.polimi.it/
https://theopenroadproject.org/
https://hub.docker.com/r/agostini01/soda
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« SODA implements an end-to-end (high-level frameworks to silicon) compiler-based
toolchain for the generation of domain-specific accelerators
= Modular, multi-level, extensible
= All based on interoperating open-source technologies
= Targets reconfigurable architectures FPGAs as well ASICs
= Considers system-level implications
= Enables automated design space exploration and agile hardware design

 The SODA Synthesizer provides a no-human-in-the-loop toolchain from algorithmic
formulation to hardware implementation for complex workloads

« SODA is also a research tool to explore novel generation methodologies for domain-
specific systems

= Discussed AXI4MLIR and SPARTA
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e This work has been partially supported by:
= The AT SCALE Initiative at PNNL

* The ASCR Project Compiler Frameworks and Hardware Generators in Support of
Innovative US Government Designs

* The Spoke 1 "FutureHPC & BigData” of the Italian Research Center on High-

Performance Computing, Big Data and Quantum Computing (ICSC) funded by MUR
Missione 4 - Next Generation EU (NGEU)

e Questions?

= antonino.tumeo@pnnl.qov
= fabrizio.ferrandi@polimi.it
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