Pacifi
N%?{:f:svest POLITECNICO

SODA
Synthesizer:
Status &

Updates

Nicolas Bohm Agostini, Ankur Limaye, Reece Neff,
Varshika Mirtinti, Claudio Barone,

Vito Giovanni Castellana, Marco Minutoli,

Joseph Manzano, Antonino Tumeo,

Giovanni Gozzi, Michele Fiorito,

Serena Curzel and Fabrizio Ferrandi

U.S. DEPARTMENT OF

ENERGY BATTELLE

PNNL is operated by Battelle for the U.S. Department of Energy

121.5

0.38
17.9

6.184

S
\\\\\\\\\\ l/l//,////
S > 2
S 2
s /A
£ Mis
= <
3 >
2,00 U

Northy ivati POLITECNICO
Northwest [Vlotivations LITECNIC
- Data science algorithms, approaches, and frameworks are LeNet architecture from the original paper

qUiCkly eVOIVing INPUT gg@:zfgitzlge maps cort maps16@10x1so4: f. maps 16@5x5

32x32 S2: f. maps

6@14x14

« Domain-specific accelerators are the only possible
approach to keep increasing performance in tight
constraints

‘ Full connection Gaussian connections

« Existing accelerators start from specific models (i.e., mostly Convolutions Subsampling Convolutions Subsamping Full connection
deep neural networks) or only try to accelerate specific
computational patterns coming from high-level frameworks

« Designing hardware by hand is complex and time-
consuming

« Depending on the application, a designer may want to
explore performance, area, energy, accuracy, and more...

* Need tools to quickly transition from formulation of an
algorithm to the accelerator implementation and
explore the accelerator design along different
dimensions

A

e | * Generates synthesizable Verilog for a variety of targets,
T from Field Programmable Gate Arrays (FPGAs) to
| Exewfb'eé’ Application Specific Integrated Circuits (ASICs)

Processor

Pacific . .
Northwest SODA Synthesizer: Overview POLITECNICO
e W[TR .« A modular, multi-level, interoperable, extensible, open-
| . — . source hardware compiler from high-level
L reweewss @ 1 programming frameworks to silicon
(;;;;;;‘“’:::_i:::: __________ .« Compiler-based frontend, leveraging the MultiLevel
i Y sooesr —— | Intermediate Representation (MLIR)
| S 7 r___l____: e ~ « Compiler-based backend, leveraging state-of-the-art
f e W=l | 1 High-Level Synthesis (HLS) techniques
i Constraints | :____ ___J Components i o

* Optimizations at all levels are performed as compiler
[M. Minutoli, V. G. Castellana, C. Tan, J. Manzano, V. Amatya, A. optl m Izatl on passes

Tumeo, D. Brooks, G-Y. Wei: SODA: a New Synthesis Infrastructure
for Agile Hardware Design of Machine Learning Accelerators. ICCAD
2020: 98:1-98:7]

[N. Bohm Agostini, S. Curzel, J. Zhang, A. Limaye, C. Tan, V. Amatya, M. Minutoli, V.G. Castellana, J. Manzano, D. Brooks, G-Y. Wei, A.
[J. Zhang, N. Bohm Agostini, S. Song, C. Tan, A. Limaye, V. Amatya Tumeo: Bridging Python to Silicon: The SODA Toolchain. IEEE Micro Magazine 2022 - Best Paper for 2022]

J. Manzano. M. Minutoli. V. G. Castellana. A. Tumeo. G-Y. Wei. D. [N. Bohm Agostini, S. Curzel, V. Amatya, C. Tan, M. Minutoli, V. G. Castellana, J. Manzano, D. Kaeli, A. Tumeo : An MLIR-based Compiler
Brooks: Towards Automatic and Agile Al/ML Accelerator Design with Flow for System-Level Design and Hardware Acceleration. ICCAD 22] o o _ _ o
End-to-End Synthesis. ASAP 2021: 218-225] [Fabrizio Ferrandi, Vito Giovanni Castellana, Serena Curzel, Pietro Fezzardi, Michele Fiorito, Marco Lattuada, Marco Minutoli, Christian

Pilato, Antonino Tumeo: Invited: Bambu: an Open-Source Research Framework for the High-Level Synthesis of Complex Applications.
DAC 2021: 1327-1330]

o

<=

Pacific .
Northwest SODA-OPT: Frontend and High-Level IR POLITECNICO

« SODA-OPT: Search, Outline, Dispatch, Accelerate frontend I:EEEE-E'*:LEVE'__FE;;_W}E:I

optimizer “generates” the SODA High-Level IR B f ————— |

| Frontend: SODA-OPT Sl

 Employs and embraces the MLIR framework i MLIR: Linalg and Affine Dialects i

» MLIR: Multi-Level Intermediate Representation | S *k — I

earc utline Kernel Tunctions |

= Used in TensorFlow, TFRT, ONNX-MLIR, NPComp, others i ¥ |

= Several architecture independent dialects (Linalg, Affine, i MR and S‘iDA Plalects i

SCF) and Opt|m|zat|0ns : Isolate Kernel & Host Code :

1 |

+ Interfaces with high-level ML frameworks through MLIR “bridges” i IRy o 1|

(e.q., libraries, rewriters) | Cide Ccfe :

[|

« Defines the SODA MLIR dialect and related compiler passes to: 1| Nanevel || Oremtomsto i
I'l optimization untime

» |dentify dataflow segments for hardware generation | ° 7 - i :

= Perform high-level optimizations (dataflow transformations, i Low-Level R || Low-Level IR i

data-level and instruction-level parallelism extraction) | | | :

= Generate interfacing code and runtime calls for S |

microcontroller l————t———| S

[N. Bohm Agostini, S. Curzel, V. Amatya, C. Tan, M. Minutoli, V. G. Castellana, J. Manzano, D. Kaeli, A. Tumeo :
An MLIR-based Compiler Flow for System-Level Design and Hardware Acceleration. ICCAD 22] SODA-OPT: System Overview

[N. Bohm Agostini, S. Curzel, D. Kaeli, A. Tumeo: SODA-OPT an MLIR based flow for co-design and high-
level synthesis. CF 2022: 201-202 - Best Poster Award.]

https://github.com/pnnl/soda-opt

o

Pacific

Northwest SODA Synthesizer: HLS Backend

* The synthesizer backend take as input the properly
optimized low-level IR and generate the hardware
descriptions of the accelerators

 The HLS backend is PandA-Bambu, an open-
source state-state-of-the-art high-level synthesis
(HLS)

» Key features: parallel accelerator designs, modular
HLS, and ASIC support

 The HLS backend provides automated testing and
verification of the generated designs

[Fabrizio Ferrandi, Vito Giovanni Castellana, Serena Curzel, Pietro Fezzardi, Michele Fiorito, Marco Lattuada, Marco Minutoli,
Christian Pilato, Antonino Tumeo: Invited: Bambu: an Open-Source Research Framework for the High-Level Synthesis of
Complex Applications. DAC 2021: 1327-1330]

Analysis & low-level optimization

Allocation

v
Scheduling based

Binding

v

Modules (RTL IR)

v

System (RTL IR)

Bambu H

https://[panda.dei.polimi.it

o

Pacific

Northwest SODA Synthesizer: ASIC targets POLITECNICO

M0
%, <=0

MILANO 1863
» The multi-level approach of the SODA toolchain allows SODAlib

supporting different target technologies (FPGA, ASIC) for

actual generation of the designs : ‘ Youys] |
« SODA also supports ASIC targets:
A

Gate Level

« Commercial Tools (Synopsys Design Compiler with
Global Foundries 12/14 nm cells)
* OpenROAD suite (OpenPDK 45nm and ASAP 7nm

Verilog

cell libraries)
OpenROAD
(Floorplanning
« Backends’ resources characterized for the target technology: Placae':jent)
« HLS Backend: Eucalyptus tool in Bambu, allows
driving hardware synthesis algorithms to optimize for Area and Latency
area, latency, etc. Estimation

* PandA-Bambu now also the opensource C frontend for SODA characterization flow. The characterization flow can be

ZeroASIC’ SlliconCompiler extended to synthesize HLS generated designs, or used to estimate
(https://www.siliconcompiler.com) their area-latency-power profiles to drive the Design Space
Exploration engine

OpenROAD

https://theopenroadproject.org

https://www.siliconcompiler.com/
https://theopenroadproject.org/

7 SODA-Synthesizer Progress: AXI4MLIR -

Pacific

Northwest Host-Accelerator Communication

Northeastern ' UnlverSIty
University 0 G dSgoOwW

POLITECNICO
MILANO 1863

« Work in collaboration with University of Glasgow and Northeastern University

« AXIAMLIR implements host code generation to drive accelerators connected through an

AXI-Stream Interface

- Operations/algorithms

= Provides Efficient Host-Accelerator execution flow e e APP“C;“O” ’
e — | - Memory capacity Host CPU - Memory hierarchy
| | - Tile sizes - Cache sizes
Before | Accelerators in isolation | - Supported
| | operations AXI Interconnect
L o e J - Opcodes - Protocol
l_ _____________________________ | |
| L | g DMA | =
i Host-Accelerator communication for | e Engine Mem. | 5
. predefined accelerators | ® | Buffer gl | &
. | 2 - DMA regions’ 3
= sizes and locations | '
r—— === ——————= |
I . . |
Goal : Host-AcceIerator COmmunlCatlon for : [N. Bohm Agostini, J. Haris, P. Gibson, M. Jayaweera, N. Rubin, A. Tumeo, K. Abellan, J. Cano,
[generated aCCG|erat0rS | D. Kaeli. AXI4MLIR: User-Driven Automatic Host Code Generation for Custom AX|-Based

I | Accelerators. CGO 2024]

7 AXI4MLIR: User-Driven Automatic Host Code

Pacific

Northwest (Generation for Custom AXI-Based Accelerators

NATIONAL LABORATORY

MILANO 1863

XILINX

« MLIR extensions to describe a rm 8 VlTIS

custom accelerators with
arbitrary instructions

« Simple Host-Accelerator
communhnication abstraction

Read
Address)

and AXI library implementation T ’
« Currently implemented targeting s | "
Systems-on-Chip developed in Master S

_ Daa 2

with Xilinx Vitis, but generalizable
to other open-source prototyping
platforms

From: Werbrouck, F. “AXI Basics 1 - Introduction to AXI”. 2023.
Available at: https://support.xilinx.com/s/article/1053914

?f/ AXI4MLIR: User-Driven Automatic Host Code

Northwest Generation for Custom AXI-Based Accelerators POMLI'J\ES{:QSO

NATIONAL LABORATORY

O (\ il Legend -———————— |
AXI4MLIR Approach L 1
HL appllcatlon

« MLIR extensions to describe (TensorFlow, Oihers)
custom accelerators with ()

Translate App to MLIR Code

arbitrary instructions \ . N\ cciorator B Host cPU
. Slmple Host-AcceIerator Lower to 1inalq dialect Information information
communication abstraction > | g
and AXI library implementation Convert named ops to FEIES ety el
linalg.generic host CPU description

* Implements host code
generation to drive accelerators Match and Annotate operations for Runtime Replacement €

connected through an AXI-

Stream Interface Perform tiling for CPU and Accelerator

Perform host code transformations and Runtime Replacement (5

Translate host code to LLVM IR ,
[and compile to binary file DMA Library @

https://github.com/AXI4AMLIR/axi4mlir

https://github.com/AXI4MLIR/axi4mlir

o

Pacific

Northwest ~ AXI4MVLIR: Contributions

MILANO 1863

» An MLIR dialect to abstract il and transactions of data packages to
the accelerator

= The dialect:

¢ send, recv, send literal, send dim, send_idx

A communication library
= Lightweight DMA Engine Library

$sA=memref.subview 3%A[%1, %j][%tile size I, %tile size J][%cl, %cl]

call @copy_ to_dma region (%sA, offset=4bytes)

call @dma_start send(size=%tile size I*Stile size J*4bytes, offset=4bytes)
call @dma_wait_ send completion/()

[<final offset> = accel.send (<memref or subview>, <dma offset>)

« A way to describe custom instructions and how to use them in an MLIR
operation

o

Pacific
Northwest ~ AXI4MLIR Results
MILANO 1863
* Accelerating Matrix-Multiplication
LayerS Of TlnyBERT |anguage Runtime Performance of TinyBert FP32
model 1.0 - B Other Layers on CPU
,) mEm Matmuls on CPU
* Presenting results for 0@ 08 Matmuls on ACC
« CPU execution =S
. . c o 0.6
» Worst case (Nothing stationary) o9 coe: 3.32% e 3.44
. N .. esze.: o. X
. ;Bjetstﬂcas)e (oracle selection of best g g 0.4 1 Matmuls: (14.69x) Matmuls: (18.43x)
ataflow =
- 2 0.2-
* Improves overall performance
due to use of the accelerator 0.0-

CPU (MLIR) Ns-SquareTile AXI4AMLIR Best
Compilation Approach

Improves improves performance
due to better orchestration of data

Improves productivity

::i/ SPARTA: High-Level Synthesis of Parallel)

Northwest Multi-Threaded Accelerators POLITECNICO

NATIONAL LABORATORY MI LANO 1863

« A design methodology to perform High-Level Synthesis of Parallel Multi-Threaded Accelerators (SPARTA)

» |Improves our previous approach (SVELTO) for generating multithreaded parallel accelerators starting from OpenMP-
annotated shared memory codes in flexibility and performance

= Uses a library of synthesizable components to directly map OpenMP runtime calls using LLVM
* Implements a deflection-based fine-grained network-on-chip to connect accelerators to external memory

= Supports memory-side caches SPARTA accelerator |Sequential computation |
Core 0 Core N
Q""" " " "> "> ">">"”"”"”"”"”/"""/"7/ /"7~ I
. Local CS Local Cs 9
Before | Template based mapping from | memory || manager ||| | memory || manager | |8
' OpenMP codes | - 3
I | Core 1 | Arbiter |Q_
L——————— e —— — = — = — — — — 4 Local cS | Thread synchronization | S
memory || manager | Shared memory |

T T | R
| New methodology that directly maps | NS
! . . Vb
| OpenMP runtime calls through LLVM | External memory

MmNy syee < L, T T T T T |

| Ability to map designs from high-level

|
languages trough MLIR OpenP
I

| dialect |

R A
L XX
[T\

X

X

X
X

o

Pacific

Northwest Bambu modified execution flow

NATIONAL LABORATORY

« SPARTA modifies the execution flows of Bambu
* It implements the operation of the OpenMP runtime with ad-hoc hardware

components.

.cl.cppl/.ll B]—)

'\

SPARTA
OpenMP library

_d—'-‘—"

HLS front-end

directives pre-processing

OpenMP pragmas pre-
processing

IR generation

—» calls to OpenMP runtime

static pointer analysis

pointer promotion

HLS back-end
thread ID propagation
OpenMP functions versioning

dead code elimination

alias analysis

allocation, scheduling, binding, |
RTL generation

‘ i
%, \ﬂi} N

POLITECNICO
MILANO 1863

standard Bambu flow
SPARTA contributions

.vi.vhd

A

13

\\\\\\\“\\\\n il IHII/II/,/////
:§ 7 g Y 2;
2res®
=:¢ fe ~4 q 5
| | | |
Pacific

Northwest Bambu modified execution flow POLITECNICO

NATIONAL LABORATORY MI LANO 1863

* Performs argument promotion to the arguments passed to the OpenMP
runtime.

* |t replicates the hardware creating multiple parallel cores.

.cl.cppl.ll ﬁ—) HLS front-end HLS back-end standard Bambu flow
SPARTA contributions
directives pre-processing thread ID propagation
OpenMP pragmas pre- OpenMP functions versioning
processing
dead code elimination
e IR generation — . .
SPARTA alias analysis
: —» calls to OpenMP runtime
OpenMP library : ' — -
e allocation, scheduling, binding, | s '51
static pointer analysis RTL generation
A

pointer promotion

14

o

Pacific

Northwest SPARTA architecture

NATIONAL LABORATORY

Cores are the base elements of the SPARTA
architecture:

« Each core implements a software function
* It has its own local memory (easy to access)

Multiple threads can execute on the same core:
when an external operation requires multiple cycles
the context active in the core changes increasing
the utilization of the hardware resources.

MILANO 1863

Core 0

Local
memory

CS
manager

15

o

Pacific

Northwest SPARTA architecture

MILANO 1863

SPARTA accelerator |Sequential computation

Each parallel region can contain

multiple cores: Core 0 Core N
. Local CS Local CS Y
SPARTA adds hardware for) memory manager memaory manager g
arbitration and synchronization o
(critical sections, barriers...) Core 1 Arbiter 3
. . o
e |t allocates the variable shared Local CS HIFAG S NONTINoD | =
between the different cores like the LlcallCob) Lol Shared memory
reduction variables.
£ O O O i
NoC
YYYYV Y VY

External memory

16

o

Pacific

Northwest ~ SPARTA Results

25

20

15

10

MILANO 1863
—&— 1 Context —&— 2 Contexts
4 Contexts 8 Contexts
4,—,,”_/_/_/_,_,:
__,_,_l—t +
-

2 4 g

Speed up of SPARTA accelerators over the sequential baseline for the
Triangle Count benchmark with different cores and contexts

Fabrizio Ferrandi / Politecnico di Milano 30 June 2024 17

o

Pacific

Northwest Public Software Repositories

MILANO 1863

« SODA-Opt: https://github.com/pnnl/sodaopt
« Panda-Bambu HLS: https://panda.dei.polimi.it (latest release 2023.10)

* OpenROAD: https://theopenroadproject.org (external tool, leveraged by SODA
toolchain to achieve end-to-end synthesis to ASIC in a fully opensource
compiler toolchain)

« SODA docker image: https://hub.docker.com/r/agostini01/soda

[m] 7% =] OfE=l0 5 5]
. ILE: ',
E . - R gt 'EhEr;:.l_;- Eh- [He]
SODA-OPT PandA-Bambu HLS (2023.10) SODA Docker Image SODA Tutorial: ISCA 2024

(tomorrow afternoon)

https://github.com/pnnl/sodaopt
https://panda.dei.polimi.it/
https://theopenroadproject.org/
https://hub.docker.com/r/agostini01/soda

o

Pacific

Northwest Conclusions POLITECNICO

MILANO 1863

O\
%, <=0

« SODA implements an end-to-end (high-level frameworks to silicon) compiler-based
toolchain for the generation of domain-specific accelerators
= Modular, multi-level, extensible
= All based on interoperating open-source technologies
= Targets reconfigurable architectures FPGAs as well ASICs
= Considers system-level implications
= Enables automated design space exploration and agile hardware design

 The SODA Synthesizer provides a no-human-in-the-loop toolchain from algorithmic
formulation to hardware implementation for complex workloads

« SODA is also a research tool to explore novel generation methodologies for domain-
specific systems

= Discussed AXI4MLIR and SPARTA

o

Pacific

Northwest Thank you!

MILANO 1863

e This work has been partially supported by:
= The AT SCALE Initiative at PNNL

* The ASCR Project Compiler Frameworks and Hardware Generators in Support of
Innovative US Government Designs

* The Spoke 1 "FutureHPC & BigData” of the Italian Research Center on High-

Performance Computing, Big Data and Quantum Computing (ICSC) funded by MUR
Missione 4 - Next Generation EU (NGEU)

e Questions?

= antonino.tumeo@pnnl.qov
= fabrizio.ferrandi@polimi.it

mailto:Antonino.tumeo@pnnl.gov
mailto:Fabrizio.ferrandi@polimi.it

