Accelerating the Discovery of Efficient Real-Time Systems-on-Chips in the Heterogeneous Era

<u>S. Pal</u>*, A. Amarnath*, B. Boroujerdian^, A. Vega*, A. Buyuktosunoglu*, J.-D. Wellman*, V. J. Reddi^, P. Bose*

*IBM T.J. Watson Research Center

[^]Harvard University

VE RI TAS HARVARD

Email: Subhankar.Pal@ibm.com

3rd Workshop on Open-Source Computer Architecture Research (OSCAR)

Heterogeneity in Modern SoCs

Jetson Orin SoC Block Diagram [1]

- Heterogeneous SoCs are gaining ubiquity for real-time (RT) edge processing, subject to strict deadlines and power/area constraints
- NVIDIA DRIVE platform, e.g., uses 2 Orin SoCs [1] and inputs from 28 sensors
- Agile and efficient design space exploration (DSE) is crucial to make optimal decisions at early stages of design

[1] https://www.nvidia.com/content/dam/en-zz/Solutions/gtcf21/jetson-orin/nvidia-jetson-agx-orin-technical-brief.pdf

Scalability Challenges

- The DSE process, consisting of architectural exploration and task-to-hardware mapping is expensive
- Even a system with a few PE choices and 10s of tasks contains as many design points (DPs) as the number of stars in the Universe!
- Insight #1: prior works consider mapping as a static DSE parameter, thereby compounding the design space
- Insight #2: prior works do not leverage dynamic run-time insights from the evaluation of DPs for the DSE itself

- ARTEMIS consists of an exploration and a simulation framework
 - Begins with a seed SoC DP and incrementally transforms it to an optimized DP that meets the pre-specified constraints

• DAG representation of the workload and application constraints are sent as inputs to the framework

- The simulator uses the Gables SoC roofline models and augmented with features such as task-to-task dependency to perform phase-driven simulation, derived from [2]
- During simulation, several statistics, e.g., task waiting times, task deadlines, etc., are computed and fed into the DSE engine

[2] B. Boroujerdian, et al., "FARSI: An Early-stage Design Space Exploration Framework to Tame the Domain-specific System-on-chip Complexity", TECS '22.

- The explorer uses RT-aware policies to iteratively select 1 the metric to optimize (latency/power/area), 2 the task to optimize to improve this metric, and 3 the hardware block to improve upon
- A library of pre-characterized PE/IC/memory blocks are fed in as inputs
- The next design point is selected based on architecture-aware simulated annealing

 DSE continues until ARTEMIS encounters a DP that meets deadlines for all DAGs, with power/area within the constraints

Scheduling Policy Adapted for DSE

• We propose a dynamic scheduling policy, called *ART_{DSE}*, to reduce the design space size; RT-metrics extracted from it are further used to efficiently navigate the design space

[1] A. Amarnath et al., "Heterogeneity-Aware Scheduling on SoCs for Autonomous Vehicles", IEEE CAL, vol. 20, no. 2, pp. 82-85, 1 July-Dec. 2021.6/29/243rd Workshop on Open-Source Computer Architecture Research (OSCAR)

Scheduling Optimizations to Aid the DSE

- **Task procrastination**: *ART*_{DSE} executes tasks that have failed to meet their deadlines, but with the lowest priority; this exposes the task to the DSE engine for acceleration
- **Energy-aware scheduling**: *ART*_{DSE} identifies tasks that can execute on slower (but lower-power) PEs and still meet their deadlines, thereby optimizing for the overall energy of the system
- **NoC-traffic-aware scheduling**: *ART*_{DSE} estimates the expected NoC traffic before scheduling a task, based on tasks reading from/writing to memory; this is used to dynamically de-prioritize memory-bound tasks to expose them via task procrastination

Experiments

- Evaluated against FARSI [2], simulated annealing, MOOS [3] and a two-phase heterogeneous DSE technique [4], on three types of workloads
- Periodic, homogeneous DAGs
 - ERA is an AV workload where NCV images, NRad radar inputs, NVit WiFi receiver streams of an AV are processed before a deadline
- Periodic, heterogeneous DAGs
 - The AR/VR workload plays back the audio based on the user's pose, pre-processes images to feed to a neural network backend, and finds sharp changes in brightness in input images and detects objects of interest
- Stochastic, homogeneous DAGs
 - Represents a signal processing application that, for instance, mixes audio signals from different sources in real-time

[2] B. Boroujerdian, et al., "FARSI: An Early-stage Design Space Exploration Framework to Tame the Domain-specific System-on-chip Complexity", TECS '22.
[3] A. Deshwal, et al., "MOOS: A Multi-Objective Design Space Exploration and Optimization Framework for NoC Enabled Manycore Systems", TECS '19.
[4] Z. J. Jia, et al., "A Two-Phase Design Space Exploration Strategy for System-Level Real-Time Application Mapping onto MPSoC", Microprocessors & Microsystems 38, 1 (2014), 9–21.

Evaluation for ERA: vs. Fixed SoC

- We compare against SoC_{fixed}: 1 CPU, N_{CV} CV IPs, N_{Rad} Radar IPs, N_{Vit} Viterbi IPs
 - The most obvious selection of IPs that the designer may come up with
- ARTEMIS-generated SoCs (SoC_{ART}) consume up to $2 \times lower$ area compared to SoC_{fixed}, which is overprovisioned for slow arrival rates and under-provisioned for faster rates
- SoC_{ART} delivers 1.5× better sustained throughput than SoC_{fixed} , at iso-area

Evaluation for ERA: vs. Prior Work

- Unconstrained topology mode:
 - SoC_{ART} has 2.4× lower area footprint than SoC_{FARSI}
 - ARTEMIS takes 9.6–13.2× less time for optimal SoC discovery, than FARSI
- Fixed-template mode:
 - SoC_{ART} has 1.2×, 1.5× & 3× better sustained throughput over SoC_{FARSI} (w/ dynamic scheduling), SoC_{FARSI}, SoC_{2_phase}, respectively
 - Converges the DSE loop with 8.4– 12.8× faster wall time

Evaluation for AR/VR

- **5.1–36.8**× times faster DSE vs. the baseline frameworks
- 100% deadlines met with a more compact SoC design than prior work
- When DSE time is restricted to ARTEMIS's convergence time, FARSI over-provisions, and MOOS/SA produce bad DPs that neither meet deadlines nor the power budget

Breakdown of Benefits with Each Feature

- Using the scheduler for mapping offers 6.2× DSE speedup
- Task procrastination provides an additional 1.4× speedup for the high congestion case
- RT-aware metric, task and block selection provides an added benefit of up to 1.5×
- 1.5–13.1× net speedup

Conclusions and Future Work

- We propose ARTEMIS, a framework for agile DSE of real-time heterogeneous SoCs
- Uses scheduler for mapping, task+ procrastination, energy-aware, NoC traffic-aware scheduling for DSE
- Demonstrated AV and AR/VR SoCs with better PPA metrics than prior work, with 5.1–12.8× reduction in DSE time
- Future work would implement support for DAG-to-DAG dependencies and chiplet-level hierarchy support for DSE
- Open sourcing the framework on GitHub in progress

Acknowledgments

This research was sponsored by DARPA. The views and findings should not be interpreted as representing the official views or policies of DoD or the U.S. Government

Thank You

Questions?