
DNN Inference on RISC-V
GPGPU

Varsha Singhania, Nayan Nair, Blaise Tine, Hyesoon Kim
Georgia Tech

Outline

 2

● Motivation
● Vortex GPU Platform
● Mapping software to hardware
● Tensor Core Exploration
● Comparison and Performance
● Future Work

Motivation

 3

| Vortex : Open Source RISC-V GPU ; no tensor cores
| Tensor Core integrated GPU architectures - proprietary
| Accelerate matrix multiplication on Vortex
| Full stack - platform for accelerator integration exploration

| Contributions:
• ISA extension
• DSE for tensor core integration
• Software task mapping to threads for parallelization
• Implementation on Vortex SimX (a cycle level simulator)

About Vortex (1)

 4

| Full stack open-source RISC-V GPU

| ISA extension for GPGPU -
• Thread scheduling

■ wspawn %waves, %PC
■ tmc %threads

• Flow control
■ split %pred
■ join

• Synchronisation
■ bar %bar, %waves

| Highly configurable number of -
• Cores, warps, threads
• ALU, FPU, LSU, SFU units per core
• # tensor cores (our addition)
• Size of tensor cores (our addition)

About Vortex (2)

 5

| Key Features
• PCIe-based Host communication
• High-bandwidth Cache sub-system
• Multi-channel memory system
• Pipeline elasticity

| Cross platform simulation
• FPGA
• RTL
• Cycle-Level Simulation

| Hardware Extensions
• 3D Graphics
• Graphics Analytics
• Ray Tracing
• Custom Extension

Mapping S/W to H/W (1)

 6

| 1 warp works on 1 output tile at a time
| Task = Unit of work that gets assigned to a thread
| Total #tasks for a MatMul = #Output Tiles x (#Threads/Tensor Cores per Warp)

Figure:
Parallel task execution by threads

Mapping S/W to H/W (2)

7

| Tasks are distributed first over all warps, then over threads within a warp.
| Threads will work on tasks sequentially in time. (For Ex. 2 tasks per thread in fig.)

Task Distribution for 8 threads, 2 warps

Warp Level Integration of TC

 8

| Interface with the LSU unit
| Interface with the Vortex pipeline (decode, execute …)
| Scratchpad integration

ISA Extension

 9

| Divided into three parts – Matrix Load, Matrix Multiply and Matrix Store.
| Implemented using three I-type instructions

| Spare Opcode – 0x7B
| Funct3 fields used to distinguish between ML, MS, MM

Thread Utilization Schemes

 10

• Work distribution among threads inside a warp
• For 1 output tile computation, multiple input tiles are required

#elements fetched by each thread = # elements required per output tile / # threads per tensor core

Option 1 : Threads Underutilization
(smaller scratchpad requirement)

Option 2 : Efficient Thread Utilization

Further Design Exploration

 11

| Data reuse
• Order of output tile being processed
• Tile assignment to a warp
• Reuse across warps

| Number of Instructions
| Accelerator Dataflows

• Weight Stationary, Input Stationary
| Tradeoff evaluation of Scratchpad size
| Granularity of TC integration

Vortex With and Without TC

 12

| Without TC, matrix multiplication
by ALU/FPU Units

| Increasing hardware resources
per warp for tensor cores further
decreases cycles.

Running Workloads

 13

Tag Workload

W1 Bert

W2 AlexNet

W3 GoogleNet

W4 Transformer

W5 ResNet-50

| Layer specificifications from
ScaleSim*

| TC Sizes : 8 = Blue ;
16 = Red ; 32 = Yellow

TC_NUM = 4 TC_NUM = 8

TC_NUM = 16 TC_NUM = 32* A. Samajdar, J. M. Joseph, Y. Zhu, P. Whatmough, M. Mattina and T. Krishna, "A Systematic Methodology
for Characterizing Scalability of DNN Accelerators using SCALE-Sim," 2020 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), Boston, MA, USA, 2020

Layer Evaluation Example

14

1st layer of Alexnet :
| Step 1 : Im2col

 Conv Layer GEMM Layer

| Step 2 : Tiling and/or padding to form standard matrix sizes (16, 32, 64, 128, 256..)

| Step 3 : Determine # kernel launches and size of matrix multiplication on each

Layer IfMap H IfMap W Filter H Filter W Channel Num Filters Stride

Conv1 227 227 11 11 3 64 4

Ax Ay Bx By

363 64 3025 363

Ax Ay Bx By

512 64 4096 512

Min Dimension Ax tiles Ay tiles Bx tiles By tiles #kernel launch

64 8 1 64 8 512

Results[1] : Scaling Vortex HW

 15

Number of LSU Lanes Number of Vortex Cores

• #LSU Lanes⬆ : Fewer memory request cycles
• [smaller matrices] #Cores⬆→ #cycles⬆ : Communication overhead > Compute

efficiency

Results[2] : Scaling TC Size

16

• For bigger TCs → need fewer output tiles → fewer instructions
• More data fetched per instr → #instr⬇→ pipeline overhead⬇→ #cycles⬇

Results[2] : Scaling Number of TCs

 17

• TCs per warp
• Per thread is a special case of per warp granularity
• 1 instr for multiple TCs → thus as #TCs⬆ , #instrs⬇ (more for bigger matrices)
• amount of data fetched per instr increases → more cycles per instr
• Overall, total cycles reduces as #instr have reduced much more

Running Tensor Core Tests

18

| Step 1: Clone Vortex repo : https://github.com/vortexgpgpu/vortex

| Step 2: Pull the “tensor-core” branch

| Step 3: Install required toolchains and build Vortex (Steps : README)

| Step 4a: Run matmul_regression.sh inside vortex/tests/regressions/matmul to run a
sweep of #Tensor Cores, Tensor Core Sizes and Matrix Sizes

| Step 4b: To run for a single configuration, run the command below from vortex/build
dir

tcnum → # of TCs, tc_size → Size of TC, matsize → matrix size

CONFIGS="-DTC_NUM=tcnum -DTC_SIZE=tc_size" ./ci/blackbox.sh --cores=4 --app=matmul --driver=simx

--threads=32 --warps=32 --args="-nmatsize -d1" --rebuild=1 --perf=1

https://github.com/vortexgpgpu/vortex

Kernel Programming

19

kernel_body:
taskID = blockIdx.x

addr_offset, res_addr_offset = f(taskID)

matrix_a_addr_offset = f(a_base_addr , addr_offset)
matrix_b_addr_offset = f(b_base_addr , addr_offset)
result_matrix_addr_offset = f(res_base_addr , res_addr_offset)
vx_matrix_load(0 , matrix_a_addr_offset)
vx_matrix_load(1 , matrix_b_addr_offset)
vx_fence()
vx_matrix_mul()
vx_fence()
vx_matrix_store(result_matrix_addr_offset)
vx_fence()

Future Work

 20

| Explore other possibilities in the GPU+accelerator design space.
| Explore different data movement strategies based on:

• Tensor core scratchpad space
• Shared memory utilization

| Explore warp collusion through shared memory to allow sharing of input data
across multiple output tiles.

| Warp specialization
| Include compiler support to translate matrix multiplications to MatMUL

instructions.
| Try out support for more involved tensor cores.
| Integrate other accelerators with GPU and implement a general GPU-accelerator

interface

21

Thank You!

Processing on Host v/s Device

 22

| Vortex has 8GB global memory.

| Demand matrix → Matrix Format suitable for streaming into a Systolic Array
• For 1024x1024 matrix multiplication, with 2x2 tile sizes, 4B elements
• Size of A, B, C = 4GB each.

| For larger matrices (CPU side) -
■ Use larger sizes of tensor cores.
■ Use fewer bits for elements of matrices to be multiplied.

| Demand matrix creation on GPU allows –
• Larger matrix computation
• Cost – extra cycles on the device, lower IPC

Global Memory Req = 2 × demand matrix size × #output tiles × data size

Design Space Exploration (Results)

 23

| Data Types
• #instr is same for different data sizes
• #cycles⬆ as data size⬆ → more data to be fetched per instr.

Related Work

24

| Tensor Core implementation is inspired by TCs of Google and Nvidia and instructions of Intel, IBM and
ARM
• Intel AMX instructions → TMUL (Tiled Matmul Unit)

• IBM Power10 MMA

• Armv9-A architecture with Scalable Matrix Extension (SME)

| Scale-SIM, Accel-Sim, Mgpusim
| Implementing Hardware Extensions for Multicore RISC-V GPUs
| Enabling Domain-Specific Architectures with an Open-Source Soft-Core

GPGPU

Tiled Matrix Multiplication

25

| More performant to perform
tiled matrix multiplication
for big matrices in a SIMT
processor

| Fewer number of global
memory accesses

| Data reuse

https://penny-xu.github.io/blog/tiled-matrix-multiplication

Performance Model

 26

| Tensor Core (multiply)
• Output Stationary Dataflow
• Latency of 1 MATMUL op = Systolic Array Load + Streaming + Drain Time

| Memory Requests (load and store)
• Number of Requests Sent via LSU per thread
• #Requests depends on data size

Conclusions

 27

| Tensor Core improves MatMul Performance on Vortex
• Thus improving neural network workload performance.

| Design Space Exploration demonstrates flexibility of Vortex to integrate with an

accelerator

| Vast DSE space for optimizing GPU+accelerator system.
• Many more HW and SW parameters to explore.

