Edge ML Acceleration with RISCV-enhanced eFPGA-SoCs

Allen Boston

B. Seyoum, L. Carloni, P.-E. Gaillardon Department of Electrical and Computer Engineering – University of Utah

Third Workshop on Open-Source Computer Architecture Research (OSCAR) Buenos Aires, Argentina - June 29, 2024

© UofU – LNIS 2022 All rights reserved

Introduction

• Growing demand to perform ML tasks on edge devices

Natural Language Interaction Image and Video Classification Con Device Training

- The appropriate HW deployment is:
	- *low power* operates under severe power constraints
	- *low development effort* easy to implement
	- flexible adapt to changing ML models

These design criteria motivate innovation for specialized architectures

- **• Cons of bespoke ML accelerator design from scratch**
	- High design effort
	- Significant software preparation
	- Low-flexibility/Fixed-function

Best Performance High Design Complexity

• Cons of bespoke ML accelerator design from scratch

- High design effort
- Significant software preparation
- Low-flexibility/Fixed-function

• Role of Compilers + General Purpose Compute

- **•** Streamline hardware interfacing
- **•** High-flexibility

Performance Suffers Low Design Complexity

Best Performance

High Design Complexity

• Cons of bespoke ML accelerator design from scratch

- High design effort
- Significant software preparation
- Low-flexibility/Fixed-function
- **• Role of Compilers + General Purpose Compute**
	- **•** Streamline hardware interfacing
	- **•** High-flexibility

Performance Suffers Low Design Complexity

Best Performance

High Design Complexity

- **• Reuse in the Open-Source Domain**
	- Leverage existing solutions to reduce design complexity
	- Promotes interoperability across projects

• Cons of bespoke ML accelerator design from scratch

- High design effort
- Significant software preparation
- Low-flexibility/Fixed-function
- **• Role of Compilers + General Purpose Compute**
	- **•** Streamline hardware interfacing
	- **•** High-flexibility

Performance Suffers Low Design Complexity

Best Performance

High Design Complexity

- **• Reuse in the Open-Source Domain**
	- Leverage existing solutions to reduce design complexity
	- Promotes interoperability across projects

University of Utah | A. Boston | 3 **Is it possible to combine aspects of these general implementation approaches with specialized open-source hardware?**

Background: Edge ML and Open-Source CPUs

- **TensorFlow (Lite)** open-source development of ML models
	- Easy to use training, inference, model tuning
	- Pre-trained models highly optimized
	- Easy portability to open-source hardware with RISC-V
- **RISC-V** open-source development of efficient general purpose computing platforms
	- Highly flexible HW and EDA tools
	- Easily programmable with software toolchain support
	- Enhanced performance with custom ISA extensions

Background: Edge ML and Open-Source CPUs

- **TensorFlow (Lite)** open-source development of ML models
	- Easy to use training, inference, model tuning
	- Pre-trained models highly optimized
	- Easy portability to open-source hardware with RISC-V
- **RISC-V** open-source development of efficient general purpose computing platforms
	- Highly flexible HW and EDA tools
	- Easily programmable with software toolchain support
	- Enhanced performance with custom ISA extensions

Strong foundation for ML hardware

University of Utah | A. Boston | 5

University of Utah | A. Boston | 5

University of Utah | A. Boston | 5

- Assemble "hard-block" Ibex RISC-V and OpenFPGA eFPGA to support ML ISA extensions
- Integrate architecture as loosely-coupled programmable accelerator in SoC with ESP
- Evaluate inference of ML Models on heterogeneous SoC

- **Proposal**
- Assemble "hard-block" Ibex RISC-V and OpenFPGA eFPGA to support ML ISA extensions
- Integrate architecture as loosely-coupled programmable accelerator in SoC with ESP
- Evaluate inference of ML Models on heterogeneous SoC

Contributions:

- Tightly-coupled RISC-V + eFPGA programmable accelerator
- Integration into ESP-based heterogeneous SoC
- Acceleration of TensorFlow Lite workloads

University of Utah | A. Boston | 7

Programmable Accelerator Architecture

- Tightly-coupled Ibex RISC-V and OpenFPGA eFPGA
	- eFPGA inserted into RISC-V pipeline
	- RISC-V pipeline stalls when eFPGA invoked
	- Multi-Clock Domain management
	- eFPGA wrapper
		- Configuration engine
		- Control and status register
		- DMA interface

✓ Complete FPGA and eFPGA generation (10+ commercial and academic tape-outs)

✓ Complete FPGA and eFPGA generation (10+ commercial and academic tape-outs)

✓ Fully customizable modern architecture (100+ tested)

✓ Complete FPGA and eFPGA generation (10+ commercial and academic tape-outs)

✓ Fully customizable modern architecture (100+ tested)

✓ Optimized for fast physical design (150k-LUT+ FPGA < 24 hr)

OpenFPGA - In a nutshell

• Unified code base for fabric generation, design verification and end-user bitstream generation

Domain-Specific eFPGAs

- OpenFPGA enables DSE and prototyping of highly customizable eFPGA fabrics
	- Best fit fabric architecture k6_n8 vs. k4_n8
	- Appropriately sized fabric 16×16 vs. 32×32
	- Balanced compute, memory, and routing resources
	- Domain-specific primitives to improve PPA
	- Optimizing eFPGA lowers PPA trade-off for post-silicon reconfigurability

SoC integration with ESP

- ESP provides automated design flow for SoC development
- Supports different accelerator designs
- Push-button SoC generation and application mapping
- Rapid FPGA prototyping

2×2 SoC Architecture

- Programmable Accelerator Tile
	- RISC-V + eFPGA
- Host CPU
	- Manages SoC
	- Invokes accelerators
- Multi-level memory architecture
- Configurable latency-insensitive NoC

DRAM

Conclusion

Contributions:

- Tightly-coupled RISC-V + eFPGA programmable accelerator
- Integration into ESP-based heterogeneous SoC
- Acceleration of TensorFlow Lite workloads
- Approach combines aspects of user-friendly general purpose compute with ASIC performance and parallelization
- TensorFlow Lite → Heterogeneous SoC
- Toolchain enables HW DSE and PPA evaluation for RISC-V ML ISA extension architectures

Conclusion

Contributions:

- Tightly-coupled RISC-V + eFPGA programmable accelerator
- Integration into ESP-based heterogeneous SoC
- Acceleration of TensorFlow Lite workloads
- Approach combines aspects of user-friendly general purpose compute with ASIC performance and parallelization
- TensorFlow Lite → Heterogeneous SoC
- Toolchain enables HW DSE and PPA evaluation for RISC-V ML ISA extension architectures
- *low power* improved HW PPA compared to fully "soft-core"
- *flexible* maintains post-silicon reconfigurability of CCU
- *low development effort* TensorFlow Lite interoperability

Future Work: eFPGA Evaluation

• DSE of eFPGA based on ISA extensions

- Determine the best fit eFPGA architecture
- Appropriately size fabric to reduce overhead
- Identify domain-specific primitives to improve PPA
- **• Compare RISC-V coupling strategies**
	- Should the RISC-V hard-block be embedded directly in the eFPGA fabric or located outside of the eFPGA fabric?
- **• Demonstrate the advantages of hard-block RISC-V**
	- Compare soft-core RISC-V on baseline FPGA architecture to a hard-block implementation in terms of power, area, and operating frequency

Future Work: System Level Evaluation

- **• Execute TensorFlow Lite Models on proposed architecture**
	- Compare standalone RISC-V to proposed eFPGA enhanced architecture
		- Execute ML models with and without ISA extensions
		- Is the slow down of eFPGA worth the parallelization across all TensorFlow Lite benchmarks?
	- **• Show flexibility of eFPGA to accomodate several varying ML models**
		- Perform inference of varying ML tasks using the same architecture
	- **• Leverage open-source tool flow to evaluate hardware,** *i.e.***, area, power, energy per inference**
		- SOTA works often evaluate only speedup of ML models with ISA extensions

Thank you for your attention *Questions?*

allen.boston@utah.edu

THE UNIVERSITY OF UTAH®

Laboratory for NanoIntegrated Systems Department of Electrical and Computer Engineering SMBB Building – University of Utah – Salt Lake City – UT – USA

<u>, muu</u>