

SO(DA)²: Software Defined Architectures for Data Analytics

OSCAR 2023 Workshop (co-located with ISCA) June 20, 2023

> Cheng Tan Microsoft

Nicolas Bohm Agostini, **Ankur Limaye**, Marco Minutoli, Vito Giovanni Castellana, Ang Li, Antonino Tumeo Pacific Northwest National Laboratory

> Serena Curzel Politecnico di Milano

PNNL is operated by Battelle for the U.S. Department of Energy

Motivation

- Modern data science applications:
 - Complex mix of algorithms with diverse behaviors
 - Performance highly dependent on the volume, the velocity, and the structure of the data
- Specialized architectures to improve efficiency and low decision latency, often integrate:
 - Domain-specific accelerators
 - Optimized memory interfaces & on-chip networks
- Reconfigurable architectures
 - Provide efficiency through adaptation without trading off flexibility
 - Coarse-grained Reconfigurable Arrays (CGRAs)
 - Functional units and memories interconnected with reconfigurable on-chip networks

Reconfigurable Architectures

Fully Custom Accelerators

Efficiency

SO(DA)² Framework Concept Map

Pacific

Northwest

High-Level Abstraction and Data-Aware Analysis

- Interfaces with high-level programming frameworks
- Generates high-level intermediate representation (IR)
- Performs high-level & data-dependent optimizations

Design Space Exploration and Synthesis (DSES) Engine

- Multi-objective (time, power, area, reuse) optimizations
- Maps tasks to resources, identifies HW configurations

Runtime Manager

- Schedules and maps configurations and compiled codes
- Run-time monitoring & reconfiguration; feedback to DSES

Reconfigurable Architecture

- Forward looking target: CGRAs
- Can exploit FPGAs for prototyping

Software Components

- **SODA-OPT**: open-source MLIR frontend and high-level IR
- **OpenCGRA**: *open-source* CGRA generator

SODA-OPT: Frontend and High-Level IR

- SODA-OPT: Search, Outline, Dispatch, Accelerate frontend optimizer • generates the SODA High-Level IR
- Employs and embraces the MLIR framework
 - Used in TensorFlow, TFRT, ONNX-MLIR, NPComp, others
 - Several architecture independent dialects (Linalg, Affine, SCF) and optimizations
- Interfaces with high-level ML frameworks leveraging MLIR bridges (e.g., libraries, rewriters)
- Defines the "soda" MLIR dialect and related compiler passes to:
 - Identify dataflow segments for hardware generation
 - Perform high-level optimizations (dataflow transformations, data-level and instruction-level parallelism extraction)
 - Generates interfacing code and runtime calls for the host

SODA-OPT: System Overview

SODA-OPT: Frontend and High-Level IR

• The SODA-OPT optimization passes:

Reuse read results, aggregate on scalars Save scalar values loaded from memory and intermediate results in registers rather than performing repeated memory accesses

Early alias analysis Schedule memory operations independently on regions that don't alias

Remove redundant or unnecessary operations Avoid wasting resources

OpenCGRA: CGRA Generator Overview

Unified flow for modeling, testing, and evaluating **Coarse-Grained Reconfigurable Arrays** (CGRAs)

Flow specializes the functional units of the CGRA tiles given one or more input applications

OpenCGRA: Generic architecture template & customizations

- 6

OpenCGRA: CGRA Generator Flow

- Employs PyMTL3 for the generation, synthesis, testing of the Verilog
- Exploits SODA-OPT and LLVM to map the dataflow graph and identify operations (simple/complex)

- High level loop transformation
 - Loop blocking/tiling
 - Loop flattening
 - Loop unrolling (depending on the CGRA size)
- Pre-store a set of configurations •
 - For dynamic partial reconfiguration
 - Limits the number of configurations
 - Only consider the "regular" shapes

OpenCGRA: CGRA Generation Flow

Partial Dynamic Reconfiguration for Streaming Applications in OpenCGRA

- Existing research/industry CGRA products accelerating streaming applications
 - One kernel at a time vs. statically partitioned for all kernels at the same time

Partial Dynamic Reconfiguration for Streaming Applications in OpenCGRA

- OpenCGRA allows for partial dynamic reconfiguration
- Example case study: 2-layer GCN, with 5 kernels and different input graphs

Case study: Experimental Evaluation

- Streaming applications targeting high throughput:
 - GCN: 5 kernels, ENZYME data set (150 for inference)
 - LU decomposition: 150 matrices (100x100) from UF Sparse Matrix Collection
- Design space: each kernel of an application runs on a CGRAs with different numbers of tiles (4x4, 4x8, 6x8) and unrolling factors (1, 2, and 4).
- #opt = number of LLVM instructions; OpSp = Optimal Speed Up; OpPa = Optimal Partition (regularly shaped)

Application	Dataset	Kernel	4x4 CGRA, U. F. $= 1$			4x8 CGRA, U. $F_{\cdot} = 2$			6x8 CGRA, U. F. = 4		
			#opt	OpSp	OpPa	#opt	OpSp	OpPa	#opt	OpSp	OpPa
2-layer Graph Convolutional Network (<i>GCN</i>)	ENZYME 600 graphs 450 for training 150 for inference	$Aggregate (\times 2)$	27	6.8	2×4	54	13.5	2×7	99	19.8	5×5
		Combine	26	6.5	2×3	52	13	3×5	95	23.8	5×5
		CombRelu	30	7.5	3×3	60	15	3×6	111	18.5	4×5
		Pooling	16	4	2×2	32	8	2×4	55	13.6	3×5
$egin{array}{c} { m Synthesized} \\ { m Lower-Upper}~(LU) \\ { m Decomposition} \\ { m kernels} \end{array}$	150 matrices (within the size of 100×100) selected from the University of Florida sparse matrix collection	Init	7	1.8	1×2	11	4	1×3	19	4.8	2×3
		Decompose	87	12.4	3×4	167	20.9	5×5	327	23.4	6×6
		Solver0	31	7.8	3×3	63	12.6	4×4	121	17.3	4×5
		Solver1	33	8.3	3×3	67	13.4	4×4	129	18.4	4×5
		Invert	65	13	4×4	127	15.9	5×5	251	19.3	6×6
		Determinant	20	3.3	2×2	39	3.9	2×2	71	3.9	2×2

Case study: Experimental Evaluation

- Effects of dynamic rebalancing:
 - Triggered after time-window of 10 executions of the whole pipeline
 - Results include the dynamic reconfiguration overheads (<1k cycles, ~few nanoseconds)
 - Rebalancing overhead is negligible with respect to the execution time of the entire pipeline of kernels (e.g., 30k to 50k cycles for the GCN)

Throughput and standard deviation averaged per time window (i.e., 10 input samples)

onds) pipeline of kernels (e.g.,

Case study: Experimental Evaluation

• Architectural exploration:

Throughput of different SPM sizes

Throughput with DRIPS partial dynamic reconfiguration over statically partitioned design

	SPM	Tile	Controller	Config NoC
Actual area (mm2)	1.1	0.63	0.248	0.09
Area distribution (%)	53.19%	30.46%	11.99%	4.35%

Area of a 5x5 CGRA design with 32KB SPM

SO(DA)² Example Designs

4x4 heterogeneous design with specialized tiles

8x8 homogeneous design with general-purpose tiles

3.7

Research Opportunities

- Evaluation of the impact of more advanced technology nodes and larger designs
 - Chiplet-based designs
 - 3D-Stacked Memory
- Integration of new functional unit tiles
 - New numeric formats
 - Highly specialized tiles generated with High-Level Synthesis
- Design Space Exploration with more complex heuristics than Simulated Annealing
 - Bioinspired search heuristics
 - Reinforcement learning
- Dataflow computing model vs. Static scheduling
- Additional metrics and monitors for partial dynamic reconfiguration

Acknowledgements

- This research was supported by PNNL Laboratory Directed Research & Development (LDRD) programs:
 - The "Software Defined Accelerators for Ultra-Low Latency Reasoning" (SODA-ULTRA) project in the Adaptive Tunability for Synthesis and Control via Autonomous Learning on Edge (AT SCALE) Initiative
 - The "Software Defined Architectures for Portability and Performance" (SODAPOP) project in the Data-Model Convergence (DMC) Initiative

Key Takeaways

- Open-source agile hardware design and prototyping:
 - SODA-OPT: https://gitlab.pnnl.gov/sodalite/soda-opt
 - OpenCGRA: https://github.com/pnnl/opencgra
- **References:**
 - SODA-OPT
 - ✓ N. Bohm Agostini, et al., "An MLIR-based Compiler Flow for System-level Design and Hardware Acceleration," ICCAD 2022.
 - OpenCGRA
 - ✓ C. Tan, et al., "OpenCGRA: An Open-Source Unified Framework for Modeling, Testing, and Evaluating CGRAs," ICCD 2020.
 - ✓ C. Tan, et al., "AURORA: Automated Refinement of Coarse-Grained Reconfigurable Accelerators," DATE 2021.
 - ✓ C. Tan, et al., "DynPaC: Coarse-Grained, Dynamic, and Partially Reconfigurable Array for Streaming Applications," ICCD 2021.
 - ✓ C. Tan, et al., "DRIPS: Dynamic Rebalancing of Pipelined Streaming Applications on CGRAs," HPCA 2022.

3.7

7.94

Thank you!

