3.7

1.7

4.14

~7

Pacific
Northwest

NATIONAL LABORATORY

SO(DA)?2: Software
Defined Architectures for

Data Analytics SSSSEES

OSCAR 2023 Workshop (co-located with ISCA)

June 20, 2023

Cheng Tan

Nicolas Bohm Agostini, Ankur Limaye,
Marco Minutoli, Vito Giovanni Castellana, Ang Li,

EEEEEEEEEEEE

PNNL is operated by Battelle for the U.S. Department of Energy

Antonino Tumeo

Serena Curzel

S.2

1.4

121.5

7.2

7.8

17.9

3.7

6.184

o

Pacific

Northwest Motjvation

 Modern data science applications:
= Complex mix of algorithms with diverse behaviors

= Performance highly dependent on the volume, the velocity,
and the structure of the data

» Specialized architectures to improve efficiency and
low decision latency, often integrate:
= Domain-specific accelerators
= Optimized memory interfaces & on-chip networks

» Reconfigurable architectures

= Provide efficiency through adaptation without trading off
flexibility

= Coarse-grained Reconfigurable Arrays (CGRAS)

= Functional units and memories interconnected with
reconfigurable on-chip networks

Flexibility

Reconfigurable
Architectures

GPGPUs

Fully Custom
Accelerators

Efficiency

v

o

Pacific

Northwest ~ SO(DA)? Framework Concept Map

Data Workflow

R ppplidation

e e e e * High-Level Abstraction and Data-Aware Analysis

| swewres | PR = |nterfaces with high-level programming frameworks
el S = Generates high-level intermediate representation (IR)
| | " | | = Performs high-level & data-dependent optimizations
| | S i
) o ~+ Design Space Exploration and Synthesis (DSES) Engine
D pae L saie Dynamic | = Multi-objective (time, power, area, reuse) optimizations
| atistics | nalysis nformation | |

| ————— = Maps tasks to resources, identifies HW configurations

-

Runtime Manager
= Schedules and maps configurations and compiled codes
= Run-time monitoring & reconfiguration; feedback to DSES

Reconfigurable Architecture
= Forward looking target: CGRASs
= Can exploit FPGAs for prototyping

Software Components
= SODA-OPT: open-source MLIR frontend and high-level IR
fffffff — = OpenCGRA: open-source CGRA generator

—{| FUs+Mem. Knobs Counters |[———

I ol
Reconfigurable architecture

Resources

Constraints

| o

\ o \
Optimization . Transf. ||

i Algorithms el and |

| Opt. | |

[V. G. Castellana, et al., “Software-defined Architectures for Data Analytics,” ASP-DAC 2019]

o

'E'%?tﬂs"est SODA-OPT: Frontend and High-Level IR

Frontend: SODA-OPT i @

I I
: : . | |
« SODA-OPT: Search, Outline, Dispatch, Accelerate frontend optimizer | v ary—
generates the SODA High-Level IR | ¥ i
I Search & Outline kernel functions
« Employs and embraces the MLIR framework | ¥ i
= Used in TensorFlow, TFRT, ONNX-MLIR, NPComp, others L MR and SiDA Dt i
= Several architecture independent dialects (Linalg, Affine, SCF) and optimizations i solate Kernel & Host Code | |
° ° ° ° I — |
* Interfaces with high-level ML frameworks leveraging MLIR bridges (e.g., [virkene |[vimros .
libraries, rewriters) s i
. (. . nalysis onver |
* Defines the “soda” MLIR dialect and related compiler passes to: | ﬁ?éﬁevt:(Spertonsto |
optimization untime
= |dentify dataflow segments for hardware generation i ¥ v i
= Perform high-level optimizations (dataflow transformations, data-level and || tow-tevelR || Low-LevellR ||
instruction-level parallelism extraction) | | ' |
= Generates interfacing code and runtime calls for the host i____;injla_te_to_L_L\iM_;____:
| To:Backend || To:LLVM Tools |

SODA-OPT: System Overview

[N. Bohm Agostini, et al., “SODA-OPT: an MLIR-based flow for co-design and high-level synthesis,” CF 2022 - Best Poster Award]
[N. Bohm Agostini, et al., “An MLIR-based Compiler Flow for System-level Design and Hardware Acceleration,” ICCAD 2022]

Pacific

Northwest SODA-OPT: Frontend and High-Level IR

« The SODA-OPT optimization passes:

Single basic block containing the compute
intensive part of the kernel [Structural
More freedom to schedule operations

Tiling
Increased instruction-level parallelism Unrollin
Schedule independent arithmetic operations on the &
same cycle when their inputs are available
Memory

Increased data-level parallelism J
Schedule operations into different memory units on
the same cycle

Temporary Buffer
7 Allocation

Avoid unnecessary reads from kernel arguments

. Promotion
Reduce expensive accesses to external memory

+ | Alloca Buffer

Avoid Redundancy
and Promote Reuse

Scalar Replacement
of Aggregates

Early Alias Analysis

Outlining

Avoid Unnecessary
Operations

Dead Code
Elimination

Common
Sub-expression
Elimination

N Reuse read results, aggregate on scalars
Save scalar values loaded from memory and
intermediate results in registers rather than
\ performing repeated memory accesses

Early alias analysis
® Schedule memory operations independently on
regions that don't alias

Remove redundant or unnecessary operations
- Avoid wasting resources

/

Pacific

Northwest OpenCGRA: CGRA Generator Overview

NATIONAL LABORATORY

An example of operation pattern

\ Core \ E - Tile || Tile [Tile =~ < Tile H— j‘% supported by complex FU
x o 1]
ccelerator ontro < . & y—v Functional Uni
oo . ARGS:OO”; %igigntalg é = TiIIe ><—<> TiIIe l— TiIIe ><—<» T TiIIe 2 Config Tt tI Qe:
* Unified flow for modeling, | [% TR Bl T T T WD g 1B e | e O
testing, and evaluating $ gUoo m (S| Tile | Tile | { Tile |- T Tile B [

: émmmm%] 18 T XTI XTI X X1 |g] —@
Coarse-Grained 2% : E L B — =
Reconfigurable Arrays Lomm) | i wo |8
(CG RAs) Memc;ry o —H Tile || Tile (| Tile [« < Tile A o _@

(a) System. (b) Generic arch?tecture template with the design spaceé. o, . (c) Generic tile architecture.
ffffffffffffffffffffffffffffffff . v ' "

° o ; P [SPM Data Bank]

* Flow specializes the [e —

functional units of the

MAC MAC I| MAC
MAC I MAC MAC

CGRA tiles givenoneor i
more input applications L

e

777

(d) Traditional CGRA. (e) TensorFlow-like systollc array. (f) CCA-like accelerator. (9) MAERI-like accelerator.

OpenCGRA: Generic architecture template & customizations

[C. Tan, et al., “OpenCGRA: An Open-Source Unified Framework for Modeling, Testing, and Evaluating CGRAs,"” ICCD 2020]

Pacific

Northwest OpenCGRA: CGRA Generator Flow

 Employs PyMTLS3 for the generation, synthesis, testing of the Verilog
 Exploits SODA-OPT and LLVM to map the dataflow graph and identify operations
(simple/complex)
Design Relaxing
Loop Transfor mation DFG Manipulation Accderator-related mufation
> Loop N Loop . Loop R DFG N Operation N DFG | Design N Estimation
. . rnels Blockin Flattenin Unrollin | Generation Fusion Mappin Refinin Model
- High level loop transformation o ﬂ o : — = — 5
= Loop blocking/tiling | i i i i | Design Prufiing i
| | LOOp ﬂattenlng Blocked EM M BII ﬁu Control Optimized Est. Perf/Area/
. . oops oops oops s s ignal ower/Timin
= Loop unrolling (depending on the E p = = = —
CGRA Slze)]] Modeding CGRA Testing CGRA Evaluating CGRA
« Pre-store a set of configurations CORA Parameters Param Srren 1T L come L[E0A
. . . . stem -plan Scri
= For dynamic partial reconfiguration \/@ - S— g — ESE:
= Limits the number of configurations FJ,?i?iggé'J ’E?EJ N) ' Harness Tt [T Characterization =] Tooifiow
= Only consider the “regular” shapes o J g J e]| RS PERT S L aon

{

FL CL RTL Verified . Timing,

OpenCGRA: CGRA Generation Flow

\%/ Partial Dynamic Reconfiguration for Streaming

Pacific

Northwest ~ Applications in OpenCGRA

Existing research/industry CGRA products accelerating streaming applications
= One kernel at a time vs. statically partitioned for all kernels at the same time

Multi-kernel/ M=y f@i%?
streaming application | g ,j_;:_
;:: P — |
" int main (...) {
T 1
Sinsln : : . stage0(); . Statically partitioned

Used in the entirety
for a kernel at a time

. to all the kernels at the

- same time
[[[< | | >

stage2();

return O;

<7 Partial Dynamic Reconfiguration for Streaming

Pacific

Northwest Applications in OpenCGRA

NATIONAL LABORATORY

OpenCGRA allows for partial dynamic reconfiguration
« Example case study: 2-layer GCN, with 5 kernels and different input graphs

Layerl Layer2
Adjacent Matrix Feature Vector Updated Feature Vector <
Predictions/
010...0 (WEEE] (] I
101...1 @ 8 B |. §| @ 'O O Classifications
.]
o 01 0 1 @ @ 8 © Il ®) @ O 'O
« @
- gh s, Bia E] ® (Weights®, Bias”)
a k5]
5 E ®.© 0 8 Lo .&* g @)
9 S row: [O11...] 2 % 3100 |i_|
= o il
E“ S col:[102...] [O
Compress Aggregatel CombineRelu Aggregate2 Combine Pooling »-.

(a) A 2-layer graph convolutional network example

Traditional - Statically partitioned for

; . ; - i
all the kernels at the same time P g@% ﬁ E SH sl i
g 0 I U'_
: - O %E ﬁ” mEE
£ & il E e E:frD
(b) Fixed partitions of CGRA for eac stage

DynPaC - Dynamically reconfigure the
H \flowngmde

CGRA after a time window erede reshape | e

- 0 Input % :_;—\
= ab
. S :+: % |:| P ombRe 5 lig;‘rj

Compi

N
Input Graph x

(c¢) Dynamically rebalance the pipeline based on the execution status of each stage in a time window :

[C. Tan, et al., “DynPaC: Coarse-Grained, Dynamic, and Partially Reconfigurable Array for Streaming Applications,” ICCD 2021- Best Paper Award]
[C. Tan, et al., “DRIPS: Dynamic Rebalancing of Pipelined Streaming Applications on CGRAs,” HPCA 2022]

Pacific

Northwest

NATIONAL LABORATORY

Case study: Experimental Evaluation

» Streaming applications targeting high throughput:
= GCN: 5 kernels, ENZYME data set (150 for inference)
= LU decomposition: 150 matrices (100x100) from UF Sparse Matrix Collection

« Design space: each kernel of an application runs on a CGRAs with different numbers of tiles (4x4,
4x8, 6x8) and unrolling factors (1, 2, and 4).

« #opt = number of LLVM instructions; OpSp = Optimal Speed Up; OpPa = Optimal Partition (regularly

shaped)

Application Dataset Kernel 4x4 CGRA,U.F. =1 || x8 CGRA, U. F. =2 || 6x8 CGRA, U. F. =4
#opt | OpSp | OpPa || #opt | OpSp | OpPa || #opt | OpSp | OpPa

Aggregate (x2) 27 6.8 2x4 54 13.5 2x7 99 19.8 5x5H

éﬂ;ﬁﬁ:ﬁ ENf;glfoEr} ffa?ingi;zphs Combine 26 | 65 | 2x3 || 52 | 13 | 3x5 | 95 | 23.8 | 5x5
Network (GCN) 150 for inference CombRelu 30 7.5 3x3 60 15 3x6 111 18.5 4x5
Pooling 16 4 2x2 32 8 2x4 55 13.6 3x5

150 matrices (within Init 7 1.8 1x2 11 4 1x3 19 4.8 2x3

Synthesized the size of 100x100) Decompose 87 124 3x4 167 20.9 5XH 327 23.4 6x6
Lower—Upper (LU) selected from the Solver0 31 7.8 3x3 63 12.6 4x4 121 17.3 4x5
Decomposition University of Florida Solverl 33 8.3 3x3 67 13.4 4x4 129 18.4 4x5
kernels sparse matrix collection Invert 65 13 4x4 127 15.9 5x5 251 19.3 6x6
Determinant 20 3.3 2%2 39 3.9 2% 2 71 3.9 2%x2

o

Pacific

Northwest Case study: Experimental Evaluation

» Effects of dynamic rebalancing:
= Triggered after time-window of 10 executions of the whole pipeline
= Results include the dynamic reconfiguration overheads (<1k cycles, ~few nanoseconds)

= Rebalancing overhead is negligible with respect to the execution time of the entire pipeline of kernels (e.g.,
30k to 50k cycles for the GCN)

E3GCN throughput LU throughput Javerage throughput O-GCN STDEV -&-LU STDEV -O-average STDEV

o2 L
= __

o 1 S8
,gﬂl 8 - - - B - — - B - 1 A
216 1 N sl "EERIEERE = moHm BEOLLD 0.9 £
§ 1.4 + —— - ; 0.8 3
%12 4 o= SEEEN R .. 07 =
= SN TR o = ® =
E 1 + 0.6 &
c Z
Z. 0.8 l f f f } } i i t I ‘ i | | l [0.5

1~10 11~20 21~30 31~40 41~50 51~60 61~70 71~80 81~90 91~100 101~110111~120121~130131~140141~150 avg
Input interval

Throughput and standard deviation averaged per time window (i.e., 10 input samples)

Pacific

Northwest (Cgse study: Experimental Evaluation

« Architectural exploration:

- OGCN OLU - OGCN OLU

a 1 + 5 7

% 0.8 518 1

£06 T 216

304 T B 14T

= 02 + =12 +

E 0 { | | | § 1 a | |

z Unlimited ~ 32KB 16KB 8KB Z 4x4 5x5 4x8 6x8
Different Sizes of Data Memory Different Sizes of DRIPS CGRA

Throughput with DRIPS partial dynamic reconfiguration over

Throughput of different SPM sizes statically partitioned design

SPM Tile Controller Config NoC
Actual area (mm2) 1.1 0.63 0.248 0.09
Area distribution (%) | 53.19% 30.46% 11.99% 4.35%

Area of a 5x5 CGRA design with 32KB SPM

o

Pacific

Northwest ~ SO(DA)? Example Designs

0.89 mm

l |

! bl
Ul

RESELE

|l
1
C
+.1.4
-t

I I Y L
L 1

g 14

£l
T

|
« 0.72 mm >

0.72 mm >

4x4 heterogeneous design with specialized tiles 8x8 homogeneous design with general-purpose tiles

o

Pacific

Northwest Research Opportunities

Evaluation of the impact of more advanced technology nodes and larger designs
= Chiplet-based designs
= 3D-Stacked Memory

Integration of new functional unit tiles
= New numeric formats
= Highly specialized tiles generated with High-Level Synthesis

* Design Space Exploration with more complex heuristics than Simulated Annealing
= Bioinspired search heuristics
= Reinforcement learning

Dataflow computing model vs. Static scheduling

Additional metrics and monitors for partial dynamic reconfiguration

Pacific

Northwest Acknowledgements

NATIONAL LABORATORY

* This research was supported by PNNL Laboratory Directed Research & Development
(LDRD) programs:

= The “Software Defined Accelerators for Ultra-Low Latency Reasoning” (SODA-ULTRA) project in the Adaptive
Tunability for Synthesis and Control via Autonomous Learning on Edge (AT SCALE) Initiative

= The “Software Defined Architectures for Portability and Performance” (SODAPOP) project in the Data-Model
Convergence (DMC) Initiative

o

Pacific

Northwest ~ Key Takeaways

* Open-source agile hardware design and prototyping:
= SODA-OPT: https://gitlab.pnnl.gov/sodalite/soda-opt
= OpenCGRA: https://github.com/pnnl/opencgra

 References:

= SODA-OPT

v" N. Bohm Agostini, et al., “An MLIR-based Compiler Flow for System-level Design and Hardware
Acceleration,” ICCAD 2022.

= OpenCGRA

v' C. Tan, et al., “OpenCGRA: An Open-Source Unified Framework for Modeling, Testing, and
Evaluating CGRASs,” ICCD 2020.

v' C.Tan, et al., “AURORA: Automated Refinement of Coarse-Grained Reconfigurable Accelerators,”
DATE 2021.

v' C. Tan, et al., “DynPaC: Coarse-Grained, Dynamic, and Partially Reconfigurable Array for Streaming
Applications,” ICCD 2021.

v' C. Tan, et al., “DRIPS: Dynamic Rebalancing of Pipelined Streaming Applications on CGRAs,” HPCA
2022.

https://gitlab.pnnl.gov/sodalite/soda-opt
https://github.com/pnnl/opencgra

3.7

Pacific
Northwest

NATIONAL LABORATORY

B [hank you!

¥ 7.94

7.8

6.184

	Diapositiva 1: SO(DA)2: Software Defined Architectures for Data Analytics
	Diapositiva 2: Motivation
	Diapositiva 3: SO(DA)2 Framework Concept Map
	Diapositiva 4: SODA-OPT: Frontend and High-Level IR
	Diapositiva 5: SODA-OPT: Frontend and High-Level IR
	Diapositiva 6: OpenCGRA: CGRA Generator Overview
	Diapositiva 7: OpenCGRA: CGRA Generator Flow
	Diapositiva 8: Partial Dynamic Reconfiguration for Streaming Applications in OpenCGRA
	Diapositiva 9: Partial Dynamic Reconfiguration for Streaming Applications in OpenCGRA
	Diapositiva 10: Case study: Experimental Evaluation
	Diapositiva 11: Case study: Experimental Evaluation
	Diapositiva 12: Case study: Experimental Evaluation
	Diapositiva 13: SO(DA)2 Example Designs
	Diapositiva 14: Research Opportunities
	Diapositiva 15: Acknowledgements
	Diapositiva 16: Key Takeaways
	Diapositiva 17: Thank you!

