
SO(DA)2: Software 
Defined Architectures for 

Data Analytics

Cheng Tan
Microsoft

OSCAR 2023 Workshop (co-located with ISCA)
June 20, 2023

Nicolas Bohm Agostini, Ankur Limaye, 
Marco Minutoli, Vito Giovanni Castellana, Ang Li, 

Antonino Tumeo
Pacific Northwest National Laboratory

Serena Curzel
Politecnico di Milano



2

Motivation

• Modern data science applications:
▪ Complex mix of algorithms with diverse behaviors
▪ Performance highly dependent on the volume, the velocity, 

and the structure of the data

• Specialized architectures to improve efficiency and 
low decision latency, often integrate:
▪ Domain-specific accelerators
▪ Optimized memory interfaces & on-chip networks

• Reconfigurable architectures 
▪ Provide efficiency through adaptation without trading off 

flexibility
▪ Coarse-grained Reconfigurable Arrays (CGRAs)
▪ Functional units and memories interconnected with 

reconfigurable on-chip networks

Fully Custom
Accelerators

CPUs

GPGPUs

Reconfigurable 
Architectures

Efficiency

Fl
ex

ib
ili

ty



3

SO(DA)2 Framework Concept Map

• High-Level Abstraction and Data-Aware Analysis
▪ Interfaces with high-level programming frameworks
▪ Generates high-level intermediate representation (IR) 
▪ Performs high-level & data-dependent optimizations

• Design Space Exploration and Synthesis (DSES) Engine
▪ Multi-objective (time, power, area, reuse) optimizations
▪ Maps tasks to resources, identifies HW configurations

• Runtime Manager
▪ Schedules and maps configurations and compiled codes
▪ Run-time monitoring & reconfiguration; feedback to DSES

• Reconfigurable Architecture
▪ Forward looking target: CGRAs
▪ Can exploit FPGAs for prototyping

• Software Components
▪ SODA-OPT: open-source MLIR frontend and high-level IR
▪ OpenCGRA: open-source CGRA generator

[V. G. Castellana, et al., “Software-defined Architectures for Data Analytics,” ASP-DAC 2019]



4

SODA-OPT: Frontend and High-Level IR

• SODA-OPT: Search, Outline, Dispatch, Accelerate frontend optimizer 
generates the SODA High-Level IR

• Employs and embraces the MLIR framework
▪ Used in TensorFlow, TFRT, ONNX-MLIR, NPComp, others
▪ Several architecture independent dialects (Linalg, Affine, SCF) and optimizations

• Interfaces with high-level ML frameworks leveraging MLIR bridges (e.g., 
libraries, rewriters)

• Defines the “soda” MLIR dialect and related compiler passes to:
▪ Identify dataflow segments for hardware generation
▪ Perform high-level optimizations (dataflow transformations, data-level and 

instruction-level parallelism extraction)
▪ Generates interfacing code and runtime calls for the host

SODA-OPT: System Overview

[N. Bohm Agostini, et al., “SODA-OPT: an MLIR-based flow for co-design and high-level synthesis,” CF 2022 - Best Poster Award]
[N. Bohm Agostini, et al., “An MLIR-based Compiler Flow for System-level Design and Hardware Acceleration,” ICCAD 2022]



5

SODA-OPT: Frontend and High-Level IR

• The SODA-OPT optimization passes:

Single basic block containing the compute 
intensive part of the kernel

More freedom to schedule operations

Increased instruction-level parallelism
Schedule independent arithmetic operations on the 

same cycle when their inputs are available

Increased data-level parallelism
Schedule operations into different memory units on 

the same cycle

Avoid unnecessary reads from kernel arguments
Reduce expensive accesses to external memory

Reuse read results, aggregate on scalars
Save scalar values loaded from memory and 
intermediate results in registers rather than 

performing repeated memory accesses

Early alias analysis
Schedule memory operations independently on 

regions that don’t alias

Remove redundant or unnecessary operations
Avoid wasting resources

Tiling

Unrolling

Temporary Buffer 
Allocation

Alloca Buffer 
Promotion

Scalar Replacement 
of Aggregates

Early Alias Analysis

Outlining

Common 
Sub-expression 

Elimination

Dead Code 
Elimination

Structural

Memory

Avoid Redundancy 
and Promote Reuse

Avoid Unnecessary 
Operations



6

OpenCGRA: CGRA Generator Overview

• Unified flow for modeling, 
testing, and evaluating 
Coarse-Grained 
Reconfigurable Arrays 
(CGRAs)

• Flow specializes the 
functional units of the 
CGRA tiles given one or 
more input applications

M x N

.

.

.

Functional Unit

. . .
Regs Regs

Config

Mem

x -

+

<

.

.

.

An example of operation pattern 

supported by complex FU

. . .

Core

T T T

T T T

T T T

T T T T

T

T

T

T

T

…

…

………… …

D
at

a

…

D
at

a

D
at

a
…

D
at

a

Memory

DMA Unit 

Control 

Signals

DMA Ctrl Data

Accelerator 

Respond

C
G

R
A

 A
cc

el
er

at
o
r

(a) System. (b) Generic architecture template with the design space. (c) Generic tile architecture.

Tile Tile Tile

Tile Tile Tile

Tile Tile Tile

Tile Tile Tile

Tile

Tile

Tile

Tile

…

…

…

……… …

…

D
at

a 
B

u
ff

er

…

D
at

a 
B

u
ff

er

…

…

S
P

M
 D

at
a 

B
an

k
S

P
M

 D
at

a 
B

a
n
k

S
P

M
 D

at
a 

B
an

k
S

P
M

 D
at

a 
B

an
k

S
P

M
 D

a
ta

 B
an

k

D
at

a 
B

u
ff

er

MAC MAC MAC MAC

MAC MAC MAC MAC

MAC MAC MAC MAC

MAC MAC MAC MAC

Data Buffer

SPM Data Bank

…

…

…

……… …

…

… S
P

M
 D

a
ta

 B
an

k

D
a
ta

 B
u

ff
e
r

SPM Data Bank

Data Buffer

S
P

M
 D

at
a 

B
a
n

k

D
a
ta

 B
u

ff
e
r

ALU ALU ALU ALU ALU

ALU ALU ALU ALU ALU

ALU ALU ALU ALU ALU

ALU ALU ALU ALU ALU

ALU ALU ALU ALU ALU

SPM Data Bank

Data Buffer

S
P

M
 D

at
a 

B
a
n

k

D
at

a
 B

u
ff

er

SPM Data Bank

Data Buffer

(d) Traditional CGRA. (e) TensorFlow-like systolic-array. (f) CCA-like accelerator. (g) MAERI-like accelerator.

A A A

B B

A

A

B

A

S
P

M
 D

at
a 

B
an

k

D
at

a
 B

u
ff

er

B

A

SPM Data Bank

Data Buffer

S
P

M
 D

at
a 

B
an

k

D
at

a
 B

u
ff

er

SPM Data Bank

Data Buffer

+ x

+ x

x x

D
at

a
 B

u
ff

er

SPM Data Bank

Data Buffer

S
P

M
 D

at
a 

B
a
n

k

D
at

a
 B

u
ff

er

SPM Data Bank

S
P

M
 D

at
a 

B
an

k

Data Buffer

+

[C. Tan, et al., “OpenCGRA: An Open-Source Unified Framework for Modeling, Testing, and Evaluating CGRAs,” ICCD 2020]

OpenCGRA: Generic architecture template & customizations



7

OpenCGRA: CGRA Generator Flow

• Employs PyMTL3 for the generation, synthesis, testing of the Verilog

• Exploits SODA-OPT and LLVM to map the dataflow graph and identify operations 
(simple/complex)

DFGs
Flattened

Loops

Vectorized

Loops
Fused

DFGs

Optimized

CGRA

Control

Signal
Blocked

Loops

DFG 

Generation

DFG

Mapping
Loop

Flattening

Loop
Unrolling

Operation 

Fusion

Loop Transformation DFG Manipulation Accelerator-related mutation

Kernels
Kernels

Kernels

Loop
Blocking

Design

Refining

Estimation

Model

Design Relaxing

Design Pruning

Message

Lib.

Mem

Lib.

Functional

Unit Lib.

Tile

Lib.
NoC

Lib.

CGRA

Lib.

Modeling CGRA

PyMTL3

Elaborate

Generation

Characterization

Simulation

Test 

Harness

CL

Model
FL

Model

RTL

Model

Param.

System
Unit Test

Integration 

Test

PBRT

Test

Verified

Perf.
SVerilog

EDA

script

EDA

Toolflow

Timing,

Area, Power

Simu

-lator

Floor

-plan

Testing CGRA Evaluating CGRA

CGRA Parameters

Est. Perf/Area/

Power/Timing

• High level loop transformation
▪ Loop blocking/tiling

▪ Loop flattening

▪ Loop unrolling (depending on the 

CGRA size)

• Pre-store a set of configurations
▪ For dynamic partial reconfiguration

▪ Limits the number of configurations

▪ Only consider the “regular” shapes

OpenCGRA: CGRA Generation Flow



8

Partial Dynamic Reconfiguration for Streaming 
Applications in OpenCGRA

• Existing research/industry CGRA products accelerating streaming applications
▪ One kernel at a time vs. statically partitioned for all kernels at the same time

int main (…) {

stage0();

stage1();

stage2();

return 0;
}

Multi-kernel/
streaming application

Used in the entirety 
for a kernel at a time

Statically partitioned 
to all the kernels at the 

same time



9

Partial Dynamic Reconfiguration for Streaming 
Applications in OpenCGRA

• OpenCGRA allows for partial dynamic reconfiguration

• Example case study: 2-layer GCN, with 5 kernels and different input graphs

Traditional – Statically partitioned for 
all the kernels at the same time

DynPaC – Dynamically reconfigure the 
CGRA after a time window

[C. Tan, et al., “DynPaC: Coarse-Grained, Dynamic, and Partially Reconfigurable Array for Streaming Applications,” ICCD 2021- Best Paper Award]
[C. Tan, et al., “DRIPS: Dynamic Rebalancing of Pipelined Streaming Applications on CGRAs,” HPCA 2022]



10

Case study: Experimental Evaluation

• Streaming applications targeting high throughput:
▪ GCN: 5 kernels, ENZYME data set (150 for inference) 
▪ LU decomposition: 150 matrices (100x100) from UF Sparse Matrix Collection

• Design space: each kernel of an application runs on a CGRAs with different numbers of tiles (4x4, 
4x8, 6x8) and unrolling factors (1, 2, and 4). 

• #opt = number of LLVM instructions; OpSp = Optimal Speed Up; OpPa = Optimal Partition (regularly 
shaped)



11

Case study: Experimental Evaluation

• Effects of dynamic rebalancing:
▪ Triggered after time-window of 10 executions of the whole pipeline
▪ Results include the dynamic reconfiguration overheads (<1k cycles, ~few nanoseconds)
▪ Rebalancing overhead is negligible with respect to the execution time of the entire pipeline of kernels (e.g., 

30k to 50k cycles for the GCN)

Throughput and standard deviation averaged per time window (i.e., 10 input samples)



12

Case study: Experimental Evaluation

• Architectural exploration:

Throughput of different SPM sizes
Throughput with DRIPS partial dynamic reconfiguration over 

statically partitioned design

Area of a 5x5 CGRA design with 32KB SPM



13

SO(DA)2 Example Designs

4x4 heterogeneous design with specialized tiles 8x8 homogeneous design with general-purpose tiles
1.3 mm

Tile0

Tile8

Tile16

Tile24

Tile32

Tile40

Tile48

Tile56

T
a
sk

 D
is

p
a
tc

h
er

 +
 C

G
R

A
 C

o
n

tr
o
ll

er

Tile4

Tile12

Tile20

Tile28

Tile36

Tile44

Tile52

Tile60
1
.2

4
 m

m

S
c
ra

tc
h
p
a
d

D
a
ta

 M
e
m

o
ry

2.19 mm

Tile 12

Tile 8

Tile 4

Tile 0

Tile 13

Tile 9

Tile 5

Tile 1

Tile 14

Tile 10

Tile 6

Tile 2

Tile 15

Tile 11

Tile 7

Tile 3

D
a

ta
 M

e
m

o
ry

0
.7

2
m

m

0.72 mm

0.89 mm

1.3 mm

Tile0

Tile8

Tile16

Tile24

Tile32

Tile40

Tile48

Tile56

T
a
sk

 D
is

p
a
tc

h
er

 +
 C

G
R

A
 C

o
n

tr
o
ll

er

Tile4

Tile12

Tile20

Tile28

Tile36

Tile44

Tile52

Tile60

1
.2

4
 m

m

S
c
ra

tc
h
p
a
d

D
a
ta

 M
e
m

o
ry

2.19 mm

Tile 12

Tile 8

Tile 4

Tile 0

Tile 13

Tile 9

Tile 5

Tile 1

Tile 14

Tile 10

Tile 6

Tile 2

Tile 15

Tile 11

Tile 7

Tile 3

D
a

ta
 M

e
m

o
ry

0
.7

2
m

m

0.72 mm

0.89 mm



14

Research Opportunities

• Evaluation of the impact of more advanced technology nodes and larger designs
▪ Chiplet-based designs
▪ 3D-Stacked Memory

• Integration of new functional unit tiles 
▪ New numeric formats
▪ Highly specialized tiles generated with High-Level Synthesis

• Design Space Exploration with more complex heuristics than Simulated Annealing
▪ Bioinspired search heuristics
▪ Reinforcement learning

• Dataflow computing model vs. Static scheduling

• Additional metrics and monitors for partial dynamic reconfiguration



15

Acknowledgements

• This research was supported by PNNL Laboratory Directed Research & Development 
(LDRD) programs:
▪ The “Software Defined Accelerators for Ultra-Low Latency Reasoning” (SODA-ULTRA) project in the Adaptive 

Tunability for Synthesis and Control via Autonomous Learning on Edge (AT SCALE) Initiative
▪ The “Software Defined Architectures for Portability and Performance” (SODAPOP) project in the Data-Model 

Convergence (DMC) Initiative



16

Key Takeaways

• Open-source agile hardware design and prototyping:
▪ SODA-OPT: https://gitlab.pnnl.gov/sodalite/soda-opt
▪ OpenCGRA: https://github.com/pnnl/opencgra

• References:
▪ SODA-OPT

✓ N. Bohm Agostini, et al., “An MLIR-based Compiler Flow for System-level Design and Hardware 
Acceleration,” ICCAD 2022.

▪ OpenCGRA
✓ C. Tan, et al., “OpenCGRA: An Open-Source Unified Framework for Modeling, Testing, and 

Evaluating CGRAs,” ICCD 2020.
✓ C. Tan, et al., “AURORA: Automated Refinement of Coarse-Grained Reconfigurable Accelerators,” 

DATE 2021.
✓ C. Tan, et al., “DynPaC: Coarse-Grained, Dynamic, and Partially Reconfigurable Array for Streaming 

Applications,” ICCD 2021.
✓ C. Tan, et al., “DRIPS: Dynamic Rebalancing of Pipelined Streaming Applications on CGRAs,” HPCA 

2022.

https://gitlab.pnnl.gov/sodalite/soda-opt
https://github.com/pnnl/opencgra


Thank you!


	Diapositiva 1: SO(DA)2: Software Defined Architectures for Data Analytics
	Diapositiva 2: Motivation
	Diapositiva 3: SO(DA)2 Framework Concept Map
	Diapositiva 4: SODA-OPT: Frontend and High-Level IR
	Diapositiva 5: SODA-OPT: Frontend and High-Level IR
	Diapositiva 6: OpenCGRA: CGRA Generator Overview
	Diapositiva 7: OpenCGRA: CGRA Generator Flow
	Diapositiva 8: Partial Dynamic Reconfiguration for Streaming Applications in OpenCGRA
	Diapositiva 9: Partial Dynamic Reconfiguration for Streaming Applications in OpenCGRA
	Diapositiva 10: Case study: Experimental Evaluation
	Diapositiva 11: Case study: Experimental Evaluation
	Diapositiva 12: Case study: Experimental Evaluation
	Diapositiva 13: SO(DA)2 Example Designs
	Diapositiva 14: Research Opportunities
	Diapositiva 15: Acknowledgements
	Diapositiva 16: Key Takeaways
	Diapositiva 17: Thank you!

