

ML4ACCEL: AN OPEN-SOURCE DATASET FOR ML-GUIDED ACCELERATOR DESIGN

Zhigang Wei, Aman Arora, Ruihao Li, Lizy John The Laboratory for Computer Architecture (LCA) The University of Texas at Austin

ML for Accelerator Design

ML for Accelerator Design

ML for Design

- Performance Estimates
- Power Estimates
- Resource Usage and Timing Estimates
- Operation Delay Estimates
- Congestion Prediction
- DRC Violation Prediction
- IR Drop Prediction
- Estimation of Quality of Synthesis

Overview of ML4Accel

ML4Accel dataset domains

ML4Accel dataset features and labels

HLS-FPGA dataset: HLSDataset

HLSDataset is a subset of ML4Accel targeting prediction tasks in FPGA via HLS

Work	# Samples	# Sources	Platform & Abstraction level	Tools	Use Case in ML
OpenABC-D	870,000	29	ASIC RTL	OpenROAD	Estimation of quality of a synthesis recipe
CircuitNet	12,960	6	ASIC Physical Design	Synopsys DC	Congestion prediction, DRC violation Prediction, IR drop prediction
Dai	1,300	65	FPGA HLS	Xilinx Vivado	Quality of Results Estimation on one FPGA
MLSBench	6,000	30	FPGA HLS	Xilinx Vivado	NA
Spector	8,300	9	FPGA HLS	Altera OpenCL SDK	NA
Ours	18,876	34	FPGA HLS	Xilinx Vivado	Power Estimates, resource and timing estimation, operation delay estimate, cross-FPGAs studies, and more

Comparison between HLSDataset and prior open-source datasets for training ML models for chip design

Generation of HLSDataset

Category	Details
Num samples	18,876
Num applications	34
Application sources	Polybench, Machsuite, CHStone, Rosetta
FPGAs	Xilinx ZU9EG, XC7V585T
Clock frequency	100MHz
Domains	Multimedia, Arithmetic, Signal Processing, ML
Size	~50GB
Machines	9 16-coe Intel Xeon 5218 2.3GHz with 384GB RAM
Time	More than 1,500 hours
Tools	Xilinx Vivado/Vitis

HLSDataset generation efforts and used tools

Generation of HLSDataset

bfs/loop2,,unroll,[2, 8, 16]

Generation of HLSDataset

10

HLSDataset

HLSDataset Contents

post_hls_info.csv				
post_impl_info.csv				
IR				
FSMD				
HLS Raw reports				
Impl Raw reports				
RTL codes				

Category	post_hls_info.csv description
Resource #	Estimated usage and available number of BRAM, DSP, FF and LUT
Clock	Target, estimation and uncertainty of the clock period
Logic ops	The number of C and RTL logic operators and associated resource usage
Arith ops	The number of C and RTL arithmetic operators and associated resource usage
Data ports	Width and the number of data input and output ports
Category	post_implementation_info.csv description
power	Simulation-based dynamic power consumption
Resource #	Actual usage of BRAM, DSP, FF and LUT
Clock	Achieved clock frequency

HLSDataset Contents

post_hls_info.csv post_impl_info.csv IR **FSMD HLSD**ataset **HLS Raw reports Impl Raw reports RTL codes**

IR: IR codes and operator information

FSMD model: Finite State Machine Datapath model

HLS Raw reports: resource usage estimation from HLS

Impl Raw reports: Resource utilization and timing reports generated after implementation

RTL codes

HLSDataset Resource Distribution for ZU9EG

HLSDataset Resource Distribution for ZU9EG

Potential Use Cases with HLSDataset

Work	ML model	Task	Feature and source	
1	Lasso, XGB, ANN	Resource usage and timing	Resource usage estimation for logic ops, arithmetic ops, memory and multiplexer; achieved clock period and uncertainty from HLS reports	
[2]	GNN	Resource usage and timing	Graph samples based on IR codes; operator type, used resource type and timing information from HLS reports	
[3]	CNN	Power estimates	Resource utilization and clock estimation by HLS reports; signal activities track and IR operator information from IR codes; RTL operator information from FSMD model	
[4]	GNN	Power estimates Signal activities track and IR operator information from codes, Graph samples built with IR codes and FSMI model, RTL operators information in FSMD model		
[5]	GNN	Operation delay	Graph structures, operation type and bitwidth from IR codes	

- Power Estimates
- Resource Utilization Estimates
- Timing and Operation Delay Estimates

Case Study 1 with HLSDataset

Dynamic Power Estimation using PowerGear

Training setup:

- GNN model from PowerGear [4]
- Polybench subsets from HLSDataset
- 10-fold cross validation
- Trained on Ampere A100

Application	Error of Dynamic Power (%)			
Application	ZU9EG	XC7V585T		
atax	3.89	5.25		
bicg	3.90	5.60		
gemm	5.24	6.50		
gesummv	7.93	9.43		
k2mm	4.25	6.00		
k3mm	4.15	6.47		
mvt	4.64	5.62		
syrk	5.31	6.22		
syr2k	6.41	6.46		
average	5.08	6.40		

Dynamic power estimation errors - Training dataset and testing dataset are from Polybench subset of HLSDataset. Results for ZU9EG and XC7V585T.

Case Study 2 with HLSDataset

Resource Usage estimation

Training setup:

- XGB and Lasso model from S. Dai et al. [1]
- Polybench, Machsuite subsets from HLSDataset
- 10-fold cross validation
- Trained on Ampere A100

Resource	LUT	FF	DSP	BRAM
HLS Estimate	63.2%	34.1%	0.0%	1.8%
XGB	3.2%	2.3%	NA	0.1%
Lasso	13.2%	15.4%	NA	NA

Resource estimation errors - Training dataset and testing dataset are from Machsuite and Polybench subsets of HLSDataset. Results for ZU9EG.

https://github.com/UT-LCA/ML4Accel-Dataset

Project is ongoing at

Thanks!

lca.ece.utexas.edu

References

- [1] S. Dai, Y. Zhou, H. Zhang, E. Ustun, E. F. Y. Young and Z. Zhang,"Fast and Accurate Estimation of Quality of Results in High-Level Synthesis with Machine Learning", International Symposium on Field-Programmable Custom Computing Machines (FCCM), 2018.
- [2] N. Wu, H. Yang, Y. Xie, P. Li, and C. Hao, "High-level synthesis performance prediction using GNNs: benchmarking, modeling, and advancing", Design Automation Conference (DAC), 2022.
- [3] Z. Lin, J. Zhao, S. Sinha and W. Zhang, "HL-Pow: A Learning-Based Power Modeling Framework for High-Level Synthesis", Asia and South Pacific Design Automation Conference (ASP-DAC), 2020.
- [4] Z. Lin, Z. Yuan, J. Zhao, W. Zhang, H. Wang, and Y. Tian, "PowerGear: early-stage power estimation in FPGA HLS via heterogeneous edgecentric GNNs", Conference and Exhibition on Design, Automation and Test in Europe (DATE), 2022.
- [5] E. Ustun, C. Deng, D. Pal, Z. Li, and Z. Zhang, "Accurate operation delay prediction for FPGA HLS using graph neural networks", International Conference on Computer-Aided Design (ICCAD), 2020.
- [6] L.-N. Pouchet. (2012) Polybench: The polyhedral benchmark suite. [Online]. Available: http://www.cs.ucla.edu/%7Epouchet/software/polybench
- [7] B. Reagen, R. Adolf, Y. S. Shao, G.-Y. Wei, and D. Brooks, "Machsuite: Benchmarks for Accelerator Design and Customized Architectures," Int'l Symp. on Workload Characterization (IISWC), 2014.
- [8] Y. Hara, H. Tomiyama, S. Honda, H. Takada, and K. Ishii, "CHStone: A Benchmark Program Suite for Practical C-Based High-Level Synthesis," Int'l Symp. on Circuits and Systems (ISCAS), 2008.
- [9] Y. Zhou et al., "Rosetta: A Realistic High-Level Synthesis Benchmark Suite for Software Programmable FPGAs", Int'l Symp. on FieldProgrammable Gate Arrays (FPGA), 2018.
- [10] B. C. Schafer and A. Mahapatra, "S2CBench: Synthesizable SystemC Benchmark Suite for High-Level Synthesis," IEEE Embedded Systems Letters (ESL), 2014.
- [11] A. B. Chowdhury et al., "OpenABC-D: A Large-Scale Dataset For Machine Learning Guided Integrated Circuit Synthesis", arxiv, 2021.