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Motivations & Goals

Optimizing Software for Accelerators in heterogeneous SoC architectures
● Modify software applications to offload specific computation kernels to accelerators
● Update the software algorithm when necessary
● Be able to run legacy software code

● Need: an efficient and transparent way to deploy software applications

Managing ML Applications Running in Parallel on the heterogeneous SoC
● Multi-tenant scenarios in real-world applications, ex: autonomous vehicles, drones, etc
● Inevitably, applications will compete in accessing accelerators

● Need: a mechanism to automatically assign available accelerators to applications
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Wolt: SoC Deployment of Machine Learning Workloads

3



The ESP Tile-based SoC Architecture
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• Scalable NoC
• Tile integration with sockets

• Standard bus interfaces
• Distributed platform services: 

memory access, coherence, 
IRQ

• Run-time configurable
on-chip communication



What is a Delegate? What is Wolt Delegate?

WoltDelegate
Create()
Delete()
SupportedNode()

Conv2d FC

Init(*context, *params)
Prepare(*context, *node)
Eval(*context, *node)
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Init()
- Store indices of all delegated 

operations
- Initialize memories 
- Initialize hardware buffer

Prepare()
- Set parameters for each node

(ex: dimensions of feature map and 
filter)

Eval()
- Execute delegated graph
- Invoke accelerators
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The Wolt Resource Manager
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The Wolt Resource Manager: Example

• A better accelerator assignment improves performance 7
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ESP SoC Flow



Evaluation: Performance
● Performance evaluation of Wolt with several different ML models
○ XNNPACK is the state-of-the-art optimized 3rd party software library for NN inference 
○ The baseline is the software execution on a single RISC-V core
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Evaluation: Energy Efficiency Gain

10



Experimental Evaluation: Wolt Resource Manager
• Evaluation of the resource manager with 8 different ML models

Time duration to run on the CPU > Time duration to run on the accelerators 11



Applications in Parallel with 2 CPUs
Amdahl’s
Law:

𝑠𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑆 + 𝑃

𝑆 + 𝑃
𝑁

𝑠𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑆 + 𝑃
𝑆
𝑀 + 𝑃

𝑁

P: time duration on CPU
S: time duration on ACC
N: number of CPUs
M: number of ACCs

P: fraction can be parallelized
S: fraction that is serial
N: number of CPUs
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Experimental Evaluation: Multi-Tenant Scenario

● Running a combination of ResNet10 (R), Vww (V), and MobileNet_v1 (M)
● SoC configuration: one CPU core and four Conv2d accelerators
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Conclusion and Future Work

● With Wolt, we developed 

○ a transparent software layer for TensorFlow Lite ML applications that decouples the 
development of software and hardware

○ a resource manager for running multi-tenant ML applications that enables the auto-
assignment of accelerators and improves the performance for parallel executions

● We plan to
○ extend the Wolt’s support to other ML frameworks (e.g., PyTorch and TVM)
○ improve the resource manager by adding more sophisticated scheduling 

mechanisms and supporting dynamic delegation of a given functionality to 
different accelerator instances that offer different design trade-offs
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ESP : An Open-Source Platform for SoC Design

www.esp.cs.columbia.edu 15
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Thank you from the ESP team!
sld.cs.columbia.edu esp.cs.columbia.edu sld-columbia/espColumbiaSld c/ESP-platform
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