
Transparent Deployment of TFLite Workloads on
Lightweight Many-Accelerator Architectures

Kuan-Lin Chiu, Guy Eichler, Chuan-Tung Lin
Giuseppe Di Guglielmo and Luca Carloni

June 29, 2024

Motivations & Goals

Optimizing Software for Accelerators in heterogeneous SoC architectures
● Modify software applications to offload specific computation kernels to accelerators
● Update the software algorithm when necessary
● Be able to run legacy software code

● Need: an efficient and transparent way to deploy software applications

Managing ML Applications Running in Parallel on the heterogeneous SoC
● Multi-tenant scenarios in real-world applications, ex: autonomous vehicles, drones, etc
● Inevitably, applications will compete in accessing accelerators

● Need: a mechanism to automatically assign available accelerators to applications
2

Wolt: SoC Deployment of Machine Learning Workloads

3

The ESP Tile-based SoC Architecture

4

• Scalable NoC
• Tile integration with sockets

• Standard bus interfaces
• Distributed platform services:

memory access, coherence,
IRQ

• Run-time configurable
on-chip communication

What is a Delegate? What is Wolt Delegate?

WoltDelegate
Create()
Delete()
SupportedNode()

Conv2d FC

Init(*context, *params)
Prepare(*context, *node)
Eval(*context, *node)

U
se

r
Ap

pl
ic

at
io

n ML Graph
a

b

d

c

Conv2d

Mul e

TF
Li

te
Co

re
 L

ib
ra

ry

Tensor Operations

…Add Mul

Conv2d…Sub

FullyConnected

DepthwiseConv2d

Delegates

Pr
oc

es
si

ng
 U

ni
t

CPU GPU DSP3rd party
SW Libraries NPU TPU

libconfig.a

libutils.a

SW Library

libesp.a

Linux Device Drivers

Init()
- Store indices of all delegated

operations
- Initialize memories
- Initialize hardware buffer

Prepare()
- Set parameters for each node

(ex: dimensions of feature map and
filter)

Eval()
- Execute delegated graph
- Invoke accelerators

5

The Wolt Resource Manager

6

The Wolt Resource Manager: Example

• A better accelerator assignment improves performance 7

8

ESP SoC Flow

Evaluation: Performance
● Performance evaluation of Wolt with several different ML models
○ XNNPACK is the state-of-the-art optimized 3rd party software library for NN inference
○ The baseline is the software execution on a single RISC-V core

S
pe
ed
up

0

5

10

15

20

25

Kw
s

Re
sN
et1
0

Vw
w

Ef
fic
ien
tN
et-
0

Ef
fic
ien
tN
et-
1

Mo
bil
eN
et_
v1

Mo
bil
eN
et_
v2

Mo
bil
eN
et_
v3

To
yC
ar

Sq
ue
ez
eN
et

MN
IS
T2

Mo
ViN
et-
A0

Mo
ve
Ne
t

Kw
s-i
nt8

Re
sN
et1
0-i
nt8

Vw
w-
int
8

Ef
fic
ien
tN
et-
0-i
nt8

Mo
bil
eN
et_
v1
-in
t8

To
yC
ar-
int
8

XNNPACK Wolt

9

Evaluation: Energy Efficiency Gain

10

Experimental Evaluation: Wolt Resource Manager
• Evaluation of the resource manager with 8 different ML models

Time duration to run on the CPU > Time duration to run on the accelerators 11

Applications in Parallel with 2 CPUs
Amdahl’s
Law:

𝑠𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑆 + 𝑃

𝑆 + 𝑃
𝑁

𝑠𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑆 + 𝑃
𝑆
𝑀 + 𝑃

𝑁

P: time duration on CPU
S: time duration on ACC
N: number of CPUs
M: number of ACCs

P: fraction can be parallelized
S: fraction that is serial
N: number of CPUs

12

Experimental Evaluation: Multi-Tenant Scenario

● Running a combination of ResNet10 (R), Vww (V), and MobileNet_v1 (M)
● SoC configuration: one CPU core and four Conv2d accelerators

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

0.0

0.5

1.0

1.5

2.0

2.5

1 R
1 V

2 R
2 V

3 R
3 V

4 R
4 V

1 R
1 M

2 R
2 M

3 R
3 M

4 R
4 M

1 R
1 V
1 M

2 R
2 V
2 M

3 R
3 V
3 M

4 R
4 V
4 M

without resource manager with resource manager

13

Conclusion and Future Work

● With Wolt, we developed

○ a transparent software layer for TensorFlow Lite ML applications that decouples the
development of software and hardware

○ a resource manager for running multi-tenant ML applications that enables the auto-
assignment of accelerators and improves the performance for parallel executions

● We plan to
○ extend the Wolt’s support to other ML frameworks (e.g., PyTorch and TVM)
○ improve the resource manager by adding more sophisticated scheduling

mechanisms and supporting dynamic delegation of a given functionality to
different accelerator instances that offer different design trade-offs

14

ESP : An Open-Source Platform for SoC Design

www.esp.cs.columbia.edu 15

§ 9:00 am Jun 30, 2024
§ Location: Quebracho A

Thank you from the ESP team!
sld.cs.columbia.edu esp.cs.columbia.edu sld-columbia/espColumbiaSld c/ESP-platform

Transparent Deployment of TFLite Workloads on
Lightweight Many-Accelerator Architectures

Kuan-Lin Chiu, Guy Eichler, Chuan-Tung Lin

Giuseppe Di Guglielmo and Luca Carloni

https://sld.cs.columbia.edu/
https://www.esp.cs.columbia.edu/
https://github.com/sld-columbia/esp
https://twitter.com/ColumbiaSld
https://www.youtube.com/c/ESP-platform

