
HW-aware mapping of Graph
Neural Networks on RISC-V GPGPU

A Work-in-Progress

Giuseppe M. Sarda1,2, Nimish Shah1, Debjyoti Bhattacharjee2,

Peter Debacker2, Marian Verhelst1,2

1KU Leuven, Leuven, Belgium
2imec, Leuven, Belgium

1

Introduction

Giuseppe

▪ Graduated from Politecnico di Torino
Electronics engineering

▪ Joined imec – KU Leuven Sept. 2020
Ph.D. researcher

▪ Passionate about on-chip ML, computer
architectures, computer arithmetic

email: Giuseppe.Sarda@imec.be

2

Outline

• Background and motivation

• The Vortex GPGPU
• Compilation flow and workload partitioning

• HW-aware optimal workload mapping

• Validation on Graph Neural Networks

• Conclusion and Future Work

3

Outline

• Background and motivation

• The Vortex GPGPU
• Compilation flow and workload partitioning

• HW-aware optimal workload mapping

• Validation on Graph Neural Networks

• Conclusion and Future Work

4

Machine learning ...
Computer vision

Machine Learning can achieve outstanding results on many tasks ...

5

Natural language process Graph-based problems

Machine learning ...

Machine Learning can achieve outstanding results on many tasks ...
with increasing requirements🚀

6

Model size vs Accuracy
ImageNet [1]

Model size over the years
Large Language Models [2]

[1] “Image Classification on ImageNet”, papers with code, June 2023
[2] “Large Language Models: A New Moore's Law?”, Hugging Face blog, 2022
[3] “Graph Neural Networks: Methods, Applications, and Opportunities”, Lilapati et al., AI Open, 2020

PubMed

Patents

Stanford

Google

Facebook

YouTube

Proteins

MUTEG

Graphs size of GNN datasets [3]

... and computers!

7

GPUs (and compute clusters)

✓ High, scalable parallelism
✓ General purpose
✓ Easy to program
✕ Low efficiency
✕ Difficult to further specialize

ASIC

✓ Optimal efficiency
✓ High, scalable parallelism
✕ Specific for an application class
✕ Non-standard programming model

Field moving towards ASIC…

8

Trends for ML Acceleration

Every point is a processor implementation!

https://nicsefc.ee.tsinghua.edu.cn/network.html

• Academia pushing towards IOT
• But scattered results
• Different accelerator for

different algorithms
Questions:
• Is this future proof?
• Can we move forward?

Academia

https://nicsefc.ee.tsinghua.edu.cn/network.html

GPUs?

9

• GPUs are the only alternative to application specific designs (ASIC or FPGA)
(in ML acceleration context)

• But need further specialization to improve efficiency

Where do we start?
• GPUs are:

• complex architectures
• Most solutions are commercial, based on proprietary design, ISA, and SW-stack😔

• But open-source, academic alternatives out there!
Not as mature as commercial solution, but enable architecture research

Motivation

10

Performance

Efficiency

Flexibility

Slow Fast

EfficientInefficient

Ad-hoc Standard

• OS-GPUs have limited efficiency, but providing great flexibility and programmability
• ASIC are very efficient, but for a specific task and with ad-hoc programming model

TARGET
1. Improve OS-GPU efficiency to reduce the gap with ASIC
2. Make our result accessible, modular, incremental, open-source!

TARGET

Qualitative comparison: ASIC vs Open-Source GPU

Outline

• Background and motivation

• The Vortex GPGPU
• Compilation flow and workload partitioning

• HW-aware optimal workload mapping

• Validation on Graph Neural Networks

• Conclusion and Future Work

11

The Vortex GPGPU

12

The Vortex GPGPU High-level architecture
• RTL level implementation of GPGPU
• Based on the RISC-V ISA
• Scalable in cores, warps and threads
• Uses open-source software stack
• Support for OpenCL

Why Vortex?
1. Closed HW-SW loop + HW validation
2. Complete memory hierarchy

implementation
3. Open-source SW stack: extendable!

GPGPU control RISC-V ISA extension
• wspawn – wavefront generation
• tmc – apply thread mask
• split/join – control flow divergence/reconvergence
• bar – wavefront barrier

The Vortex GPGPU

13

The Vortex GPGPU High-level architecture
• RTL level implementation of GPGPU
• Based on the RISC-V ISA
• Scalable in cores, warps and threads
• Uses open-source software stack
• Support for OpenCL

Why Vortex?
1. Closed HW-SW loop + HW validation
2. Complete memory hierarchy

implementation
3. Open-source SW stack: extendable!

GPGPU ISA control extension
• wspawn – wavefront generation
• tmc – apply thread mask
• split/join – control flow divergence/reconvergence
• bar – wavefront barrier

Idea:
1. Benchmark Graph Neural Network (e2e) on Vortex
2. Highlight architectural bottlenecks
3. Propose solutions to improve execution

But inefficiencies in the kernel execution
(@ SW level!)

Outline

• Background and motivation

• The Vortex GPGPU
• Compilation flow and workload partitioning

• HW-aware optimal workload mapping

• Validation on Graph Neural Networks

• Conclusion and Future Work

14

OpenCL Compilation Flow

15

POCL: OpenCL
front-end compiler

Inputs to the compiler

OpenCL
kernel

Kernel
LLVM IR

Program
binary

POCL transforms the
kernel according to

OpenCL HW-SW standard

Vortex
Intrinsics

Vortex
runtime
library

Static
library

Some runtime
library code

POCL inserted code

Some other
runtime library

code

Kernel

LLVM*: RISC-V
back-end compiler

*Supporting Vortex GPGPU RISC-V extension

Workload distribution on vortex

16

Some runtime
library code

POCL inserted code

Some other
runtime library

code

Kernel

Program execution

STEP 1 – Spatial workload distribution
Workload is evenly distributed among HW resources
Example!
vector addition C = A + B with 16 elements
Each thread will add 2 elements (typical case)

SW vector

HW resources

STEP 2 – Temporal Unrolling
Determines the elements executed by every spawned (SW) warp
This depends on a runtime parameter passed by the host global
kernel call → local work size

t

Example HW configuration:
1 core, 2 warps, 4 threads/warp

Workload distribution on vortex

17

Some runtime
library code

POCL inserted code

Some other
runtime library

code

Kernel

Program execution

STEP 1 – Spatial workload distribution
Workload is evenly distributed among HW resources
Example!
vector addition C = A + B with 16 elements
Each thread will add 2 elements (typical case)

SW vector

HW resources

STEP 2 – Temporal Unrolling
Determines the elements executed by every spawned (SW) warp
This depends on a runtime parameter passed by the host global
kernel call → local work size

t

Example HW configuration:
1 core, 2 warps, 4 threads/warp

local work size=1

1 2

local work size=2

1,2

Outline

• Background and motivation

• The Vortex GPGPU
• Compilation flow and workload partitioning

• HW-aware optimal workload mapping

• Validation on Graph Neural Networks

• Conclusion and Future Work

18

Temporal Unrolling

19

Some runtime
library code

POCL inserted code

Some other
runtime library

code

Kernel

Program execution

t

Example HW configuration:
1 core, 2 warps, 4 threads/warp

Pseudo code (executed by every thread)
local_work_size (lws) specified by host
for i in range(local_work_size):

#(tid → assigned first iteration)
C[tid + i] = C[tid + i] + C[tid + i]

Example – Execution changing lws
vecadd 16 elements

lws wspawn tmask

1 4 1111

2 2 1111

4 2 0011

8 2 0001

Problem
• The lws parameter

impacts the execution
• “Wrong” values lead to

suboptimal HW
utilization (slower exec,
more instr. issues)

How to determine optimal
lws dynamically for
different kernels?

Underutilization

Optimal HW-aware mapping

23

Example – Execution changing lws
• HW configuration:

1 core, 2 warps, 4 threads
• SW: vecadd 16 elements

lws wspawn tmask

1 4 1111

2 2 1111

4 2 0011

8 2 0001

𝑙𝑤𝑠𝑜𝑝𝑡 =
𝑔𝑤𝑠

𝑐𝑜𝑟𝑒𝑠 × 𝑤𝑎𝑟𝑝𝑠 × 𝑡ℎ𝑟𝑒𝑎𝑑𝑠

gws→ global workload size
(16 in the example)

SW

HW

vecadd C=A+B

Optimal HW-aware mapping

24

Example – Execution changing lws
• HW configuration:

1 core, 2 warps, 4 threads
• SW: vecadd 16 elements

𝑙𝑤𝑠𝑜𝑝𝑡 =
𝑔𝑤𝑠

𝑐𝑜𝑟𝑒𝑠 × 𝑤𝑎𝑟𝑝𝑠 × 𝑡ℎ𝑟𝑒𝑎𝑑𝑠

lws wspawn tmask

1 4 1111

2 2 1111

4 2 0011

8 2 0001

gws→ global workload size
(16 in the example)

SW

HW

vecadd C=A+B

• Optimal mapping needs
HW and SW information

• It can be evaluated
dynamically at runtime

• Our mapping abstracts HW
to programmer

Outline

• Background and motivation

• The Vortex GPGPU
• Compilation flow and workload partitioning

• HW-aware optimal workload mapping

• Validation on Graph Neural Networks

• Conclusion and Future Work

25

Graph Neural Networks: Overview

26

Graph Neural Networks (GNN)
Class of Machine Learning models
• Exploit information embedded in graph structure
• Combine with neural networks
to perform specific tasks (classification, prediction, …)

layer n layer n+1

processing

feature vector
edge

node

Aggregation – gathers info from neighbors
Graph Conv Networks → Weighted average

Combination – applies some processing
Graph Conv Networks → Fully connected layer

*

* we use CSR sparse sgemm in our benchmarks

Validation methodology

27

1. Sampled 15 different Vortex architecture configurations
2. Evaluated our mapping on GCN layers over:

a. cora, citeseer and pubmed datasets
(different graph size, different structure)

b. 16, 32, and 64 hidden feature size
c. on single aggregation, combination and full layer

3. Compared execution latency results with:
a. naïve mapping (lws=1)
b. fixed mapping (lws=32)

FoM
(lower is better) aggr sgemm

full
layer

Our mapping slower
than others (>5%)

10/135
(7.4%)

9/135
(6.7%)

2/135
(1.5%)

Validation methodology

28

1. Sampled 15 different Vortex architecture configurations
2. Evaluated our mapping on GCN layers over:

a. cora, citeseer and pubmed datasets
(different graph size, different structure)

b. 16, 32, and 64 hidden feature size
c. on single aggregation, combination and full layer

3. Compared execution latency results with:
a. naïve mapping (lws=1)
b. fixed mapping (lws=32)

FoM
(lower is better) aggr sgemm

full
layer

Our mapping slower
than others (>5%)

10/135
(7.4%)

9/135
(6.7%)

2/135
(1.5%)

Results
Our mapping:
1. Always deliver comparable execution latency
2. Shows higher benefits with combined kernel calls

Outline

• Background and motivation

• The Vortex GPGPU
• Compilation flow and workload partitioning

• HW-aware optimal workload mapping

• Validation on Graph Neural Networks

• Conclusion and Future Work

29

Conclusion

30

• ML acceleration research optimizes architectures for specific models
• A different approach is bridging the gap between open-source GPUs and ASIC

We:
• Investigated limitations of the Vortex GPGPU platform
• Proposed an optimal, HW-aware mapping (dynamic at runtime)

that ensures an efficient execution, minimizing cycle latency
• Validated on several configurations of GCN layers

Our mapping performs better in 98.5% of the cases

Efficiency EfficientInefficient TARGET

We fixed a bug 🐛 in the Vortex runtime library (prevents correct execution!)

Pull request → Fixed #79 bug in vx_spawn.c for rT kernel iteration allocation

Now we can validate in way more HW configurations

Apply our patch if you are going to use Vortex 😋

Pull request to the Vortex repo

31

https://github.com/vortexgpgpu/vortex/pull/80

• Improve the loop overhead

• Focus where we started → GNN execution

Future Work

32

33

Thank you for your attention!

	Diapositiva 1: HW-aware mapping of Graph Neural Networks on RISC-V GPGPU A Work-in-Progress
	Diapositiva 2: Introduction
	Diapositiva 3: Outline
	Diapositiva 4: Outline
	Diapositiva 5: Machine learning ...
	Diapositiva 6: Machine learning ...
	Diapositiva 7: ... and computers!
	Diapositiva 8: Trends for ML Acceleration
	Diapositiva 9: GPUs?
	Diapositiva 10: Motivation
	Diapositiva 11: Outline
	Diapositiva 12: The Vortex GPGPU
	Diapositiva 13: The Vortex GPGPU
	Diapositiva 14: Outline
	Diapositiva 15: OpenCL Compilation Flow
	Diapositiva 16: Workload distribution on vortex
	Diapositiva 17: Workload distribution on vortex
	Diapositiva 18: Outline
	Diapositiva 19: Temporal Unrolling
	Diapositiva 23: Optimal HW-aware mapping
	Diapositiva 24: Optimal HW-aware mapping
	Diapositiva 25: Outline
	Diapositiva 26: Graph Neural Networks: Overview
	Diapositiva 27: Validation methodology
	Diapositiva 28: Validation methodology
	Diapositiva 29: Outline
	Diapositiva 30: Conclusion
	Diapositiva 31: Pull request to the Vortex repo
	Diapositiva 32: Future Work
	Diapositiva 33: Thank you for your attention!

