OSCAR Workshop at ISCA 2023

A Fast Open-Source
Extended GCD Accelerator

Kavya Sreedhar, Mark Horowitz, Christopher Torng
Stanford University
skavya@stanford.edu

June 18, 2023

Session IV — Accelerators and Memory Optimization

mailto:skavya@stanford.edu

Introduction Design Space Case Studies Open-Source Accelerator

Cryptography relies on hard problems

* Modern cryptography is based on computationally hard problems
* Typically require large-integer arithmetic

* Execution time of computation for these problems is critical

Stanford University Kavya Sreedhar 1/27

Introduction Design Space Case Studies Open-Source Accelerator

Many hard problems rely on extended GCD

XGCD computes Bézout coefficients b, by, satisfying Bézout’s Identity

ba by i bg* ag + by, * by = ged(ay, by)

Stanford University Kavya Sreedhar 2 /27

Introduction Design Space Case Studies Open-Source Accelerator

here is an increasing need for faster XGCD

2018: Verifiable delay functions 1

e Useful for consensus protocols
* Can be efficiently verified
* Require fixed time for evaluation

[1] Boneh et al. Verifiable delay functions. Crypto 2018.

Stanford University Kavya Sreedhar 3/27

Introduction Design Space Case Studies Open-Source Accelerator

here is an increasing need for faster XGCD

2018: Verifiable delay functions !l 2021: XGCD found to be fastest way
to compute modular inverses 12

» Useful for consensus protocols e Used widely in cryptography
* Can be efficiently verified e Findx™1: xxx™1 =1 (mod p)
* Require fixed time for evaluation * Since x is secret, this operation

needs to be constant-time

[1] Boneh et al. Verifiable delay functions. Crypto 2018. [2] Bernstein and Yang. Fast constant-time gcd computation and modular inversion. CHES 2019.

Stanford University Kavya Sreedhar 4 /27

Introduction Design Space Case Studies Open-Source Accelerator

here is an increasing need for faster XGCD

2018: Verifiable delay functions !l 2021: XGCD found to be fastest way
to compute modular inverses 12

» Useful for consensus protocols e Used widely in cryptography
* Can be efficiently verified e Findx™1: xxx™1 =1 (mod p)
* Require fixed time for evaluation * Since x is secret, this operation

needs to be constant-time

e XGCD takes 91% of execution time e XGCD takes 100% of execution time

1024-bits, not constant-time 255-bits, constant-time

[1] Boneh et al. Verifiable delay functions. Crypto 2018. [2] Bernstein and Yang. Fast constant-time gcd computation and modular inversion. CHES 2019.

Stanford University Kavya Sreedhar 5/27

Introduction Design Space Case Studies Open-Source Accelerator

Previous view of XGCD design space

Target Platform Hardware

lterative
Algorithm
Operation

Application

Requirements
[AHAJS16] [DAPM+21]
[ZST+20]
NCT = not constant-time, CT = constant-time [ZTW21]

Stanford University Kavya Sreedhar 6/27

Introduction Design Space Case Studies Open-Source Accelerator

We explore the broader XGCD design space

Target Platform Software Hardware

lterative
Algorithm
Operation
Application
Requirements
[Por20] [BY19] [AHAJS16] [DdPM+21]
[ZST+20]
NCT = not constant-time, CT = constant-time [ZTW21]

Stanford University Kavya Sreedhar 7 /27

Introduction

We explore the broader XGCD design space

Target Platform

Design Space

Software

Case Studies

Open-Source Accelerator

Hardware

lterative
Algorithm
Operation

Application
Requirements

NCT CT NCT CT Unified NCT CT
[Por20] [BY19] [SHT22] [AHAJS16] [DdPM+21]
[220+23] [ZST+20]
NCT = not constant-time, CT = constant-time [0ZT+23] [ZTW21]
Kavya Sreedhar 8 /27

Stanford University

Introduction Design Space Case Studies Open-Source Accelerator

Outline

4.0
142.51% 2.5% 0% 0% 0.25% 0.25% 2.25% 2.25%)
Software Hardware ‘ is
0% 0% 0% 0% 1.0% 1.0%

N

w

3.0
/ \ / \ 0% 0% 2.53%2.49%2.24% 2.24% 0.25% 0.24%|

2.5

— - — —— % 4 0% 0% 0% 0% -0.99% 1.02%)
E 2.0

JE_ 5 0% 0% 1.87%1.87%1.87% 1.89%)
1.5

/ \ / \ / \ / \ 6 % 0% 1.86% 1.85%1.86% 1.89%)
NCT CT NCT CT Unified NCT CT 1.0

7 1.86% 1.88%1.87% 1.89%|
[Por20] [BY19] [SHT22] [AHAJS16] [DdPM+21] . e
[220+23] [Z5T+20] Ll oo

[0ZT+23] [ZTW21] o2 34 56 78

To case

Design Performance Open-Source
Space Case Studies Accelerator

Stanford University Kavya Sreedhar 9 /27

Introduction Design Space Case Studies Open-Source Accelerator

Hardware allows for short iteration times

Target Platform Software VS Hardware
Number of Iterations From algorithm From algorithm
Constrained to ISA Yes No

Execution time = number of iterations * iteration time

The control over iteration time in hardware opens the opportunity to
accelerate simpler algorithms that require more iterations.

Stanford University Kavya Sreedhar 10/ 27

Introduction Design Space Case Studies Open-Source Accelerator

Subtraction-based algorithms are faster

lterative Stein [Ste67] Euclid (300 BC)
Algorithm _ VS -
Operation
GCD-preserving gcd(a, b) gcd(a, b)
Transformation = gcd(a — b, b) = gcd(a mod b, b)

Also divides by 2 if possible

Execution time = number of iterations * iteration time

Subtraction-based algorithms result in short critical paths and reduce
overall latency compared to division-based algorithms.

Stanford University Kavya Sreedhar 11/ 27

Introduction Design Space Case Studies Open-Source Accelerator

Our unified design with constant-time config

Application Not VS Constant-
Requirements constant-time time
Approach Reduce inputs until GCD Pad to worst-case cycle count
Termination Condition a==0orb==0 Cycle count equal to worst case

Stanford University Kavya Sreedhar 12 / 27

Introduction Design Space Case Studies Open-Source Accelerator

Outline

4.0
142.51% 2.5% 0% 0% 0.25% 0.25% 2.25% 2.25%)
Software Hardware ‘ is
0% 0% 0% 0% 1.0% 1.0%

N

w

3.0
/ \ / \ 0% 0% 2.53%2.49%2.24% 2.24% 0.25% 0.24%|

2.5

— - — —— % 4 0% 0% 0% 0% -0.99% 1.02%)
E 2.0

JE_ 5 0% 0% 1.87%1.87%1.87% 1.89%)
1.5

/ \ / \ / \ / \ 6 % 0% 1.86% 1.85%1.86% 1.89%)
NCT CT NCT CT Unified NCT CT 1.0

7 1.86% 1.88%1.87% 1.89%|
[Por20] [BY19] [SHT22] [AHAJS16] [DdPM+21] . e
[220+23] [Z5T+20] Ll oo

[0ZT+23] [ZTW21] o2 34 56 78

To case

Design Performance Open-Source
Space Case Studies Accelerator

Stanford University Kavya Sreedhar 13 /27

Introduction

Case study

Design Space Case Studies Open-Source Accelerator

1: composing operations

e Design selects across many parallel operations

* Some operations are compositions of others

* In an iterative algorithm, composing reduces cycles

* When should we stop composing?

Stanford University

22 parallel
operations

Kavya Sreedhar 14 / 27

Introduction Design Space

ransition matrix

1 N 0% 0% 0.25% 0.25% Eeaiuaaatars
24 0% 0% 0% 0% 1.0% 1.0%
34 0% 0% 2.53%2.49%2.24% 2.24% 0.25% 0.24%

44 0% 0% 0% 0% -0.99%1.02%

0% 0% 1.87%1.87%1.87%1.89%

From case

0% 1.86%1.85%1.86% 1.89%

0%

1.86%1.88%1.87%1.89%

1.87%1.89%1.87%1.89%

i 1

T I T T

1 2 3 4 5 6 7 8
To case

Stanford University

4.0

3.5

3.0

= 2.5

- 2.0

Ul

1.0

- 0.5

0.0

Kavya Sreedhar

Case Studies

e Case l:a =
e Case 2: a =
e Case 3: b

e Case4d: b

Open-Source Accelerator

a
2 e Case 5:a = ath
4
a —
5 *Caseb:a= S
4
b
=2 e Case7: b = atb
4
b _
=37 e Case 8: b = b-a
4
Random 1024-bit inputs
15/ 27

Introduction Design Space Case Studies Open-Source Accelerator

When should we stop composing?

* Not constant-time
* Stop when critical path delay increase exceeds cycles decrease
* When aor b is even: Divide by up to 8
* When a and b are odd: Divide by 4

Stanford University Kavya Sreedhar 16 /27

Introduction Design Space Case Studies Open-Source Accelerator

When should we stop composing?

* Not constant-time
* Stop when critical path delay increase exceeds cycles decrease
* When aor b is even: Divide by up to 8
* When a and b are odd: Divide by 4

* Constant-time
e Stop when transitions are not guaranteed
* When a or b is even: Divide by 2
* When a and b are odd: Divide by 4

Stanford University Kavya Sreedhar 17 / 27

Introduction Design Space Case Studies Open-Source Accelerator

Case study #2 relies on carry-save adders

* The fastest adder is a carry-save adder (CSA)
* Eliminates carry propagation, requiring O (1) delay
e Stores numbers in CSA form or redundant binary form

1101 (a)
1110
A B
1101 (a) +(1)(1)18$)) (R
+ 1110(b) S 1-bit
0010 (c) + 0001 sum Cout < AZL(‘j”er <—Cin
11101 11100 carry ¢
___________________ g
11101

Stanford University Kavya Sreedhar

18 / 27

Introduction Design Space Case Studies Open-Source Accelerator

Case study #2: fast termination detection

* Design terminates when a or b is equal to O
* The values of a and b are not directly known in CSA form

carry 0000 0001 1011
sum 0000 1111 0101

* Recovering a, b requires long carry propagation
* How can we compare a and b to O efficiently every iteration?

Stanford University Kavya Sreedhar 19 /27

Introduction Design Space Case Studies Open-Source Accelerator

How can we compare a and b to 0?

* Can shorten carry propagation by tracking a = log, a,f = log, b
* However, a, can diverge from log, a,log, b
* Can occasionally correct «, 8 to be the true values of log, a,log, b

Correction Frequency Average Added Cycle Overhead
16 0.5%
64 2.0%
256 7.3%
Never 13%

Stanford University Kavya Sreedhar 20/ 27

Introduction Design Space Case Studies Open-Source Accelerator

Outline

4.0
142.51% 2.5% 0% 0% 0.25% 0.25% 2.25% 2.25%)
Software Hardware ‘ is
0% 0% 0% 0% 1.0% 1.0%

N

w

3.0
/ \ / \ 0% 0% 2.53%2.49%2.24% 2.24% 0.25% 0.24%|

2.5

— - — —— % 4 0% 0% 0% 0% -0.99% 1.02%)
E 2.0

JE_ 5 0% 0% 1.87%1.87%1.87% 1.89%)
1.5

/ \ / \ / \ / \ 6 % 0% 1.86% 1.85%1.86% 1.89%)
NCT CT NCT CT Unified NCT CT 1.0

7 1.86% 1.88%1.87% 1.89%|
[Por20] [BY19] [SHT22] [AHAJS16] [DdPM+21] . e
[220+23] [Z5T+20] Ll oo

[0ZT+23] [ZTW21] o2 34 56 78

To case

Design Performance Open-Source
Space Case Studies Accelerator

Stanford University Kavya Sreedhar 21/ 27

Introduction Design Space Case Studies Open-Source Accelerator

Open-Source accelerator with SKY130

Nucleo board

Caravel wrapper

3.52mm S| XGCD chip

Fabricated with the Efabless Open MPW?2 Shuttle, sponsored by Google

https://efabless.com/open shuttle program

Stanford University Kavya Sreedhar 22 [/ 27

https://efabless.com/open_shuttle_program

Introduction Design Space

Case Studies

Open-Source Accelerator

Area is dominated by Bézout variable updates

Module Area (mm?) % of Area
Initial computation 0.27 4.8
a, b update (2-count) 0.31 5.5
Bézout coefficient update (4-count) 3.84 68
Control variable updates 0.57 10
Final result calculation 0.36 6.4
JTAG for Chip 10 0.22 3.6
Miscellaneous 0.10 1.7
Total 5.66 100
Stanford University Kavya Sreedhar 23 /27

Introduction Design Space

Critical path for ASIC in S

Case Studies

KY130

Open-Source Accelerator

Operation Delay (ns)

DFF CLK to Q 0.54
CSA 1 0.51
CSA 2 0.67
CSA 3 0.56
Shift in CSA form 0.22
Late select multiplexers 0.30
Precomputing control 0.14
Library setup time 0.07
Total 3

Stanford University

Kavya Sreedhar

Carry-save
adder logic

Control
overhead

24 / 27

Cycle Count

Introduction Design Space Case Studies Open-Source Accelerator

Related work comparison

10°
104

GNU C++ on Apple M1

N\ o
[Our ASIC simulation
[ZT\XZH N e 38X faster than software
This work [SHT22] 14X faster than state-of-the-art ASIC
Better * Graph shows absolute times in us
g * Comparisons are with all prior work
technology-scaled to 180-130nm
0.1 1 10

Clock Frequency (GHz)

Stanford University Kavya Sreedhar 25 /27

Introduction Design Space Case Studies Open-Source Accelerator

Putting the open-source in OSCAR

RTL and SKY130 physical design files
https://github.com/kavyasreedhar/sreedhar-xgcd-hardware-ches2022

Efabless Caravel user project integration for MPW2 tapeout
https://github.com/kavyasreedhar/caravel user project

Stanford University Kavya Sreedhar 26 /27

https://github.com/kavyasreedhar/caravel_user_project
https://github.com/kavyasreedhar/caravel_user_project

Introduction Design Space Case Studies Open-Source Accelerator

akeaways

* Recent advanced cryptography developments heavily rely on fast XGCD
* [terative subtraction and carry-save arithmetic enable high performance

* Open-source XGCD accelerator demonstrated in SKY130nm

Obpa0

— I.:J:'-h-.._u.

:" G
e

Stanford University Kavya Sreedhar 27 [27

