
Session IV – Accelerators and Memory Optimization

OSCAR Workshop at ISCA 2023

A Fast Open-Source 
Extended GCD Accelerator

Kavya Sreedhar, Mark Horowitz, Christopher Torng
Stanford University

skavya@stanford.edu

June 18, 2023

mailto:skavya@stanford.edu


Stanford University Kavya Sreedhar 1 / 27

Introduction Design Space Open-Source AcceleratorCase Studies

Cryptography relies on hard problems

• Modern cryptography is based on computationally hard problems
• Typically require large-integer arithmetic

• Execution time of computation for these problems is critical



Stanford University Kavya Sreedhar 2 / 27

Introduction Design Space Open-Source AcceleratorCase Studies

Many hard problems rely on extended GCD

XGCD computes Bézout coefficients 𝒃𝒂, 𝒃𝒃 satisfying Bézout’s Identity

𝒃𝒂, 𝒃𝒃 : 𝒃𝒂∗ 𝑎# + 𝒃𝒃 ∗ 𝑏# = gcd 𝑎#, 𝑏#



Stanford University Kavya Sreedhar 3 / 27

Introduction Design Space Open-Source AcceleratorCase Studies

There is an increasing need for faster XGCD

2018: Verifiable delay functions [1]

• Useful for consensus protocols
• Can be efficiently verified
• Require fixed time for evaluation

[1] Boneh et al. Verifiable delay functions. Crypto 2018. [2] Bernstein and Yang. Fast constant-time gcd computation and modular inversion. CHES 2019.



Stanford University Kavya Sreedhar 4 / 27

Introduction Design Space Open-Source AcceleratorCase Studies

There is an increasing need for faster XGCD

2018: Verifiable delay functions [1] 2021: XGCD found to be fastest way 
to compute modular inverses [2]

• Useful for consensus protocols
• Can be efficiently verified
• Require fixed time for evaluation

• Used widely in cryptography
• Find 𝑥!" ∶ 𝑥 ∗ 𝑥!" = 1 𝑚𝑜𝑑 𝑝
• Since 𝑥 is secret, this operation 

needs to be constant-time

[1] Boneh et al. Verifiable delay functions. Crypto 2018. [2] Bernstein and Yang. Fast constant-time gcd computation and modular inversion. CHES 2019.



Stanford University Kavya Sreedhar 5 / 27

Introduction Design Space Open-Source AcceleratorCase Studies

There is an increasing need for faster XGCD

2018: Verifiable delay functions [1] 2021: XGCD found to be fastest way 
to compute modular inverses [2]

• Useful for consensus protocols
• Can be efficiently verified
• Require fixed time for evaluation

• XGCD takes 91% of execution time
1024-bits, not constant-time

• XGCD takes 100% of execution time
255-bits, constant-time

• Used widely in cryptography
• Find 𝑥!" ∶ 𝑥 ∗ 𝑥!" = 1 𝑚𝑜𝑑 𝑝
• Since 𝑥 is secret, this operation 

needs to be constant-time

[1] Boneh et al. Verifiable delay functions. Crypto 2018. [2] Bernstein and Yang. Fast constant-time gcd computation and modular inversion. CHES 2019.



Stanford University Kavya Sreedhar 6 / 27

Introduction Design Space Open-Source AcceleratorCase Studies

Previous view of XGCD design space
Hardware

CTNCT

Target Platform

Application 
Requirements

[AHAJS16]
[ZST+20]
[ZTW21]

[DdPM+21]

÷
Iterative 
Algorithm 
Operation

NCT = not constant-time, CT = constant-time



Stanford University Kavya Sreedhar 7 / 27

Introduction Design Space Open-Source AcceleratorCase Studies

We explore the broader XGCD design space
Software

−

CTNCT

÷

CTNCT

Hardware

−

CTNCT

÷

Target Platform

Application 
Requirements

[BY19][Por20]

Iterative 
Algorithm 
Operation

NCT = not constant-time, CT = constant-time

CTNCT

[AHAJS16]
[ZST+20]
[ZTW21]

[DdPM+21]



Stanford University Kavya Sreedhar 8 / 27

Introduction Design Space Open-Source AcceleratorCase Studies

We explore the broader XGCD design space
Software

− ÷

Hardware

− ÷

Target Platform

Iterative 
Algorithm 
Operation

Application 
Requirements

NCT = not constant-time, CT = constant-time

Unified

[SHT22]
[ZZO+23]
[OZT+23]

CTNCT CTNCT

[BY19][Por20]

CTNCT

[AHAJS16]
[ZST+20]
[ZTW21]

[DdPM+21]



Stanford University Kavya Sreedhar 9 / 27

Introduction Design Space Open-Source AcceleratorCase Studies

Outline

Design
Space

Performance
Case Studies

Open-Source 
Accelerator



Stanford University Kavya Sreedhar 10 / 27

Introduction Design Space Open-Source AcceleratorCase Studies

Hardware allows for short iteration times

Target Platform

[DdPM+21][BY19][Por20] Our work

Number of Iterations

Constrained to ISA

From algorithm

Yes

From algorithm

No

Execution time = number of iterations ∗ iteration time

The control over iteration time in hardware opens the opportunity to 
accelerate simpler algorithms that require more iterations.

vsSoftware Hardware



Stanford University Kavya Sreedhar 11 / 27

Introduction Design Space Open-Source AcceleratorCase Studies

Subtraction-based algorithms are faster
Iterative 

Algorithm 
Operation

GCD-preserving 
Transformation

a

gcd(𝑎, 𝑏)
= gcd(𝑎 − 𝑏, 𝑏)

gcd(𝑎, 𝑏)
= gcd 𝑎 𝑚𝑜𝑑 𝑏, 𝑏

vs− ÷

Stein [Ste67] Euclid (300 BC)

Execution time = number of iterations ∗ iteration time

Subtraction-based algorithms result in short critical paths and reduce 
overall latency compared to division-based algorithms.

Also divides by 2 if possible



Stanford University Kavya Sreedhar 12 / 27

Introduction Design Space Open-Source AcceleratorCase Studies

Our unified design with constant-time config

Approach

Termination Condition

Reduce inputs until GCD

𝑎 == 0 or 𝑏 == 0

Pad to worst-case cycle count

Cycle count equal to worst case

vsNot 
constant-time

Constant-
time

Application 
Requirements



Stanford University Kavya Sreedhar 13 / 27

Introduction Design Space Open-Source AcceleratorCase Studies

Outline

Design
Space

Performance
Case Studies

Open-Source 
Accelerator



Stanford University Kavya Sreedhar 14 / 27

Introduction Design Space Open-Source AcceleratorCase Studies

Case study #1: composing operations

• Design selects across many parallel operations
• Some operations are compositions of others
• In an iterative algorithm, composing reduces cycles
• When should we stop composing?

22 parallel 
operations



Stanford University Kavya Sreedhar 15 / 27

Introduction Design Space Open-Source AcceleratorCase Studies

Transition matrix

Random 1024-bit inputs

• Case 1: 𝑎 = $
%

• Case 2: 𝑎 = $
&

• Case 3: 𝑏 = '
%

• Case 4: 𝑏 = '
&

• Case 5: 𝑎 = $('
%

• Case 6: 𝑎 = ')$
%

• Case 7: 𝑏 = $('
%

• Case 8: 𝑏 = ')$
%



Stanford University Kavya Sreedhar 16 / 27

Introduction Design Space Open-Source AcceleratorCase Studies

When should we stop composing?

• Not constant-time
• Stop when critical path delay increase exceeds cycles decrease
• When a or b is even: Divide by up to 8 
• When a and b are odd: Divide by 4



Stanford University Kavya Sreedhar 17 / 27

Introduction Design Space Open-Source AcceleratorCase Studies

When should we stop composing?

• Not constant-time
• Stop when critical path delay increase exceeds cycles decrease
• When a or b is even: Divide by up to 8 
• When a and b are odd: Divide by 4

• Constant-time
• Stop when transitions are not guaranteed
• When a or b is even: Divide by 2
• When a and b are odd: Divide by 4



Stanford University Kavya Sreedhar 18 / 27

Introduction Design Space Open-Source AcceleratorCase Studies

Case study #2 relies on carry-save adders

• The fastest adder is a carry-save adder (CSA)
• Eliminates carry propagation, requiring 𝑂(1) delay
• Stores numbers in CSA form or redundant binary form

1 1 1 0
1 1 0 1 (a)
1 1 1 0 (b)
0 0 1 0 (c)

----------------
1 1 1 0 1

+

1 1 0 1 (a)
1 1 1 0 (b)
0 0 1 0 (c)

-------------------
0 0 0 1 sum

1 1 1 0 0 carry
-------------------
1 1 1 0 1

+

+



Stanford University Kavya Sreedhar 19 / 27

Introduction Design Space Open-Source AcceleratorCase Studies

Case study #2: fast termination detection

• Design terminates when a or b is equal to 0
• The values of a and b are not directly known in CSA form

• Recovering a, b requires long carry propagation
• How can we compare a and b to 0 efficiently every iteration?

carry 0000
sum 0000

0001
1111

1011
0101



Stanford University Kavya Sreedhar 20 / 27

Introduction Design Space Open-Source AcceleratorCase Studies

How can we compare a and b to 0?

• Can shorten carry propagation by tracking 𝛼 ≈ log& 𝑎 , 𝛽 ≈ log& 𝑏
• However, 𝛼, 𝛽 can diverge from log& 𝑎 , log& 𝑏
• Can occasionally correct 𝛼, 𝛽 to be the true values of log& 𝑎 , log& 𝑏

Correction Frequency Average Added Cycle Overhead
16 0.5%
64 2.0%

256 7.3%
Never 13%



Stanford University Kavya Sreedhar 21 / 27

Introduction Design Space Open-Source AcceleratorCase Studies

Outline

Design
Space

Performance
Case Studies

Open-Source 
Accelerator



Stanford University Kavya Sreedhar 22 / 27

Introduction Design Space Open-Source AcceleratorCase Studies

Open-Source accelerator with SKY130

Fabricated with the Efabless Open MPW2 Shuttle, sponsored by Google

XGCD chip

Caravel wrapper

Nucleo board

https://efabless.com/open_shuttle_program

https://efabless.com/open_shuttle_program


Stanford University Kavya Sreedhar 23 / 27

Introduction Design Space Open-Source AcceleratorCase Studies

Area is dominated by Bézout variable updates 

Module Area (mm2) % of Area
Initial computation 0.27 4.8

a, b update (2-count) 0.31 5.5
Bézout coefficient update (4-count) 3.84 68

Control variable updates 0.57 10
Final result calculation 0.36 6.4

JTAG for Chip IO 0.22 3.6
Miscellaneous 0.10 1.7

Total 5.66 100



Stanford University Kavya Sreedhar 24 / 27

Introduction Design Space Open-Source AcceleratorCase Studies

Critical path for ASIC in SKY130
Operation Delay (ns)

DFF CLK to Q 0.54
CSA 1 0.51
CSA 2 0.67
CSA 3 0.56
Shift in CSA form 0.22
Late select multiplexers 0.30
Precomputing control 0.14
Library setup time 0.07
Total 3

Carry-save 
adder logic

Control 
overhead



Stanford University Kavya Sreedhar 25 / 27

Introduction Design Space Open-Source AcceleratorCase Studies

[ZTW21]
[ZST+20]

[SHT22]This work

0.1 1 10

Related work comparison

Our ASIC simulation
• 38X faster than software
• 14X faster than state-of-the-art ASIC

* Graph shows absolute times in us
* Comparisons are with all prior work 
technology-scaled to 180-130nm

Clock Frequency (GHz)

100

105

103

104

102

101

Cy
cl

e 
Co

un
t

Better

GNU C++ on Apple M1



Stanford University Kavya Sreedhar 26 / 27

Introduction Design Space Open-Source AcceleratorCase Studies

Putting the open-source in OSCAR

RTL and SKY130 physical design files
https://github.com/kavyasreedhar/sreedhar-xgcd-hardware-ches2022

Efabless Caravel user project integration for MPW2 tapeout
https://github.com/kavyasreedhar/caravel_user_project

https://github.com/kavyasreedhar/caravel_user_project
https://github.com/kavyasreedhar/caravel_user_project


Stanford University Kavya Sreedhar 27 / 27

Introduction Design Space Open-Source AcceleratorCase Studies

Takeaways

• Recent advanced cryptography developments heavily rely on fast XGCD

• Iterative subtraction and carry-save arithmetic enable high performance

• Open-source XGCD accelerator demonstrated in SKY130nm


