
ReRoCC: An Open-source Framework for Virtualized
and Disaggregated RISC-V Accelerators

1

Jerry Zhao, Seah Kim,
Krste Asanovic, Borivoje Nikolic, Yakun Sophia Shao

<seah|jzh>@berkeley.edu

Trends in Modern SoCs

More cores
● End of single-thread

performance scaling
● Many-core SoCs to

extract TLP

How to scalably architect
many-accelerator SoCs?

More accelerators
● More compute-bound

workloads require
acceleration

More applications
● Software stacks grow in

complexity
● Graphics/multimedia/AI

are pervasive

CPU-integrated:

▪ Appears as custom ISA extensions to
host software

▪ Simplifies software stacks, accelerators
appear as architectural extensions in
the instruction stream

Existing Accelerator Integration Methodologies

Memory-mapped devices:

▪ Physically disaggregated over
interconnect

▪ SW/HW features for managing these
devices: interrupts/IOMMU/mmap

Can we develop a new accelerator integration
methodology that preserves the advantages of both

approaches?

1. Scalable to many-accelerator systems
• Implies physical scalability, distribute accelerators across an interconnect
• Implies support for accelerator virtualization

2. Minimize area overhead
• Low-cost hardware modules added to existing cores + accelerators

3. Minimize latency for accelerator management
• Bound by physical interconnect latency, not the software stack

4. Backwards compatiblility
• Out-of-the-box support for existing accelerator implementations
• No modifications to existing accelerator software stacks

Requirements for Approach

A full-stack system enabling disaggregation + virtualization of RoCC
(tightly-coupled) accelerators

ReRoCC: Remote RoCC Accelerators

A full-stack system enabling disaggregation + virtualization of RoCC
(tightly-coupled) accelerators

ReRoCC: Remote RoCC Accelerators

System-level:

▪ Assumes a global physical
“ID-space” of remotely-attached
RoCC accelerators

▪ Platform should encode the physical
“ID-space”

ReRoCC Architectural Extensions

ISA-level:

▪ CSRs: rrcfg0 - rrcfgX
• Configure which of the system-level

physical accelerators are locked to
this thread

• Writes acquire/release shared
accelerators

▪ CSRs: rropc0 - rropc3
• Set which accelerator should

receive instructions of this opcode
• Enables virtualization of the

opcode/accelerator space

A full-stack system enabling disaggregation + virtualization of RoCC
(tightly-coupled) accelerators

ReRoCC: Remote RoCC Accelerators

Procedure:
1. Software should attempt to acquire

an accelerator from the system

2. Software should map a local
opcode to the accelerator

3. After acquisition, accelerator
appears to be architecturally part of
the host thread

4. Software should release the
accelerator to the system after
completion

ReRoCC Programming Model

Code:
do {
 csr_write(CSR_RRCFG0, RRCFG_ACQ | 0x0);
} while (csr_read(CSR_RRCFG0) & !RRCFG_ACQ);

csr_write(CSR_OPC0, 0x0);

libaccel_execute_task();

csr_write(CSR_CFG0, 0x0);

● Accelerator acquisition can happen in user-space
● Latency is just interconnect latency to query the accelerator for availability

● Platforms can implement multiple homogeneous accelerators
● User threads can query to request any, or multiple available accelerators
● Threads which fail to acquire can sleep() to deschedule themselves

Procedure:
1. Software should attempt to acquire

an accelerator from the system

2. Software should map a local
opcode to the accelerator

3. After acquisition, accelerator
appears to be architecturally part of
the host thread

4. Software should release the
accelerator to the system after
completion

ReRoCC Programming Model

Code:
do {
 csr_write(CSR_RRCFG0, RRCFG_ACQ | 0x0);
} while (csr_read(CSR_RRCFG0) & !RRCFG_ACQ);

csr_write(CSR_OPC0, 0x0);

libaccel_execute_task();

csr_write(CSR_CFG0, 0x0);

● Fast, low-latency, just writing some CSR on the core
● Supporting more acquired accelerators than opcodes lets us get around

limited available opcode space

Procedure:
1. Software should attempt to acquire

an accelerator from the system

2. Software should map a local
opcode to the accelerator

3. After acquisition, accelerator
appears to be architecturally part of
the host thread

4. Software should release the
accelerator to the system after
completion

ReRoCC Programming Model

Code:
do {
 csr_write(CSR_RRCFG0, RRCFG_ACQ | 0x0);
} while (csr_read(CSR_RRCFG0) & !RRCFG_ACQ);

csr_write(CSR_OPC0, 0x0);

libaccel_execute_task();

csr_write(CSR_CFG0, 0x0);
● After acquisition, accelerator is part of host thread
● Unmodified accelerator kernels/libraries can be executed

Procedure:
1. Software should attempt to acquire

an accelerator from the system

2. Software should map a local
opcode to the accelerator

3. After acquisition, accelerator
appears to be architecturally part of
the host thread

4. Software should release the
accelerator to the system after
completion

ReRoCC Programming Model

Code:
do {
 csr_write(CSR_RRCFG0, RRCFG_ACQ | 0x0);
} while (csr_read(CSR_RRCFG0) & !RRCFG_ACQ);

csr_write(CSR_OPC0, 0x0);

libaccel_execute_task();

csr_write(CSR_CFG0, 0x0);

A full-stack system enabling disaggregation + virtualization of RoCC
(tightly-coupled) accelerators

ReRoCC: Remote RoCC Accelerators

Client:

▪ Attaches to CPUs via RoCC
▪ Sends instructions to acquired

accelerators
▪ Maintains shadows arch. state on

the manager

ReRoCC Hardware Components

Manager:

▪ Attaches to existing RoCC
accelerators

▪ Implements PTW/TLB
▪ Maintains shadow copy of thread

architectural state

A full-stack system enabling disaggregation + virtualization of RoCC
(tightly-coupled) accelerators

ReRoCC: Remote RoCC Accelerators

▪ Non-blocking, two-channel (req/resp) FIFO protocol for client-manager
communication

▪ Minimal set of flows
• Acquire->AcquireResp : Attempt to acquire an accelerator for the client
• Inst->InstAck : Send instructions, performs flow control
• Update : Update shadowed architectural state
• Release : Relinquish an accelerator

▪ Interconnect ready - adapters to support
overlay on top of example NoC
implementation (Constellation)

ReRoCC Messaging Protocol

A full-stack system enabling disaggregation + virtualization of RoCC
(tightly-coupled) accelerators

ReRoCC: Remote RoCC Accelerators

Open-sourced at github.com/ucb-bar/rerocc

Common open-source platform for exploring new ideas

▪ Provides an implementation of existing proposals for virtualized accelerators
▪ Enables easy evaluation of tradeoffs between tightly-coupled/disaggregated

accelerator architectures
▪ Lots of design parameters to explore in the Client/Manager/Interconnect

implementations
▪ Compatible with existing open-source Chipyard-based ecosystem

ReRoCC Directions

A full-stack system enabling disaggregation + virtualization of RoCC
(tightly-coupled) accelerators

ReRoCC: Remote RoCC Accelerators

Open-sourced at github.com/ucb-bar/rerocc

Research was partially funded by NSF CCRI Award #2016662 and partially by SLICE Lab
industrial sponsors and affiliates. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or any agency thereof.

Acknowledgements

