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Motivation

® SoCs are increasingly heterogeneous and
complex

® On-chip shared memory can reduce memory
access time and simplify programming in
SoCs

® 50Cs utilize cache hierarchies to enforce
memory coherency of on-chip shared memory
across the entire system

The performance of the cache hierarchy is

crucial to reducing memory access time in an
SoC




=SP: An Open-Source Platform for SoC design

WWW.esp.cs.columbia.edu

® ESP combines a flexible
architecture with automated IP
integration and a large variety of
accelerator design flows to
provide a platform for rapid SoC
design and prototyping

® ESP also provides a cache
hierarchy for implementing on-
chip shared memory
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=S Architecture

* RISC-V Processors

* Many-Accelerator

* Distributed Memory
* Multi-Plane NoC

/

The ESP architecture implements a

modular and heterogeneous,
giving processors and accelerators
N similar weight in the SoC

distributed system, which is scalable,
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SH Methodology

Accelerator Flow
* Simplified design

* Automated
integration

SoC Flow

* Mix & match floor-
planning GUI

* Rapid FPGA
prototyping
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=S Methodology

SoC Flow

* Mix & match floor-
planning GUI

e Rapid FPGA
prototyping

ESP SoC Generator

General SoC configuration:
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cache hierarchy

Consists of private L2 caches and a LLC (Last Level Cache)
Extended MESI directory-based cache coherence protocol
LLC maintains coherence between L2 caches

have L2 caches provided by ESP
typically perform DMA to DRAM, but can also interface with LLC

and optionally have L2 cache

In ESP, accelerators can operate under

O

@)
@)
@)

Non-coherent DMA: No L2 cache, DMA to DRAM only

LLC-coherent DMA: No L2 cache, DMA to LLC with coherence enforced by software flush
Coherent DMA: No L2 cache, DMA to LLC with coherence enforced by protocol

Fully Coherent: Accelerator has L2 cache just like processor cores



=S cache coherence protocol

® Extended MESI directory-based cache coherence protocol
® Cache line states: Modified, Exclusive, Shared, Invalid, (Valid)

TABLE 1
DIRECTORY CONTROLLER’S EXTENDED MESI PROTOCOL.
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S cache hierarchy example

SoC
MNoC routers DR:S‘M
mem|
(1 2 3 4 5 6 |
aux acc - NoC |coherence DMA 10/IRQ
------ L planes planes plane.
¥ e
accelerator |PLM (bank ) bank ) [ 1 mstr.l L1 data| %
read/write port config port done _;.....2
[} [ rofwr Tinval. - g
cache TLB [,’:ﬂf‘ I‘EZ‘?S| | IRQ ‘Lz cache!_ flush
i i 5 5 EE Ry
12 3 4 5 6 1 2 3 6
coherence DMA 10/IRQ |NoC|coherence 10/IRQ
planes planes plane L planes plane ]

4x4 tile ESP system

Processor tiles have off-the-shelf L1
cache

ESP provides L2 caches for
Processor tiles and optionally
Accelerator tiles

Memory tiles contain LLC

Cache hierarchy is connected via a
multi-plane NoC (Network-on-Chip)



Improving LLC throughput

® LLCisthe for the SoC
o All L2 caches must interface with LLC
® Throughput of the LLC can limit performance of SoC when

® The current LLC implementation utilizes a multi-cycle data path, only
handling one request per multi-cycle iteration

We implement a



LLC Microarchitecture without pipelining

6-stage multi-cycle datapath controlled by FSM unit
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Pipelined LLC: Step 1

Distribute control logic across all stages
Implement valid-ready protocol pipeline registers
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Pipelined LLC: Step 2

Elimination of read-after-write hazards and read/write collisions
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Pipelined LLC: Step 3

Prevent out-of-order completion of requests
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Pipelined LLC: Step 4

Increase pipeline utilization of DMA requests
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LLC Pipelined Microarchitecture
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Verification: RTL simulation for LLC

SystemVerilog testbenches for RTL simulation

Large coverage test for basic functionality Small coverage test for pipeline functionality
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Verification: RTL simulation for full ESP system

Single-core and multi-core simulation of basic “Hello World” program

NoC Tile Configuration
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Verification: FPGA testing

Implementing SoC on FPGA and
running applications

® Small applications:
o Single-core and multi-core “Hello
World”
o Multi-core shared memory and lock
program

® Booting Linux with Ethernet

enabled on Single-core SoC

o Ethernet uses coherent DMA to the
LLC

Picture shows 2-core SoC. Red: CPU, Green:
Memory Tile with LLC, Yellow: I/O Tile



Performance Assessment: Method

Monitor memory access time of 3 different accelerator workloads, compare times
when using LLC without pipelining and with pipelining

® FFT (Fast Fourier Transform)

® Matrix Multiplication (GEMM)

® 2D Convolution (CONV2D)

ESP Performance Monitors API allows monitoring of memory access time only



Performance Assessment: FPGA Implementation

Implement two SoCs, one SoC with
pipelined LLC, one SoC with original
LLC

Workload variables:
® b different sizes from XS to XL

® 2 Coherence Modes
o LLC-Coherent DMA: Accelerators
access LLC after software flush of
L2 caches for coherence
o Coherent DMA: Accelerators access
LLC with coherence enforced by
hardware coherence protocol
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Performance Assessment: Speedup Results

® Speedup of memory access times on SoC with pipelined LLC compared to SoC
with original LLC

Speedup is as high as 50%, ranges from 10%-25%
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Conclusion

® We implemented pipelining in the ESP Last Level Cache, resolved pipelining
hazards, optimized DMA performance, and enabled concurrent processing of
LLC requests.

® We achieved significant speedup in memory access times of accelerator DMA,
up to Y50% for some workloads with a consistent range of 10% to 25%, and
maintained modularity and scalability of ESP

Verification is still in progress (booting Linux on multi-core configurations), but we
plan to release a version of ESP with the improved cache hierarchy later this year!
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