Presenting for OSCAR 2023:
Pipelining an Open-Source Last-Level Cache

Kevin Jiang, Joseph Zuckerman, and Luca P. Carloni

&2 COLUMBIA UNIVERSITY CS& - MPUTER SCIENCE
IN THE CITY OF NEW YORK @CU

Motivation

® SoCs are increasingly heterogeneous and
complex

® On-chip shared memory can reduce memory
access time and simplify programming in
SoCs

® 50Cs utilize cache hierarchies to enforce
memory coherency of on-chip shared memory
across the entire system

The performance of the cache hierarchy is

crucial to reducing memory access time in an
SoC

=SP: An Open-Source Platform for SoC design

WWW.esp.cs.columbia.edu

® ESP combines a flexible
architecture with automated IP
integration and a large variety of
accelerator design flows to
provide a platform for rapid SoC
design and prototyping

® ESP also provides a cache
hierarchy for implementing on-
chip shared memory

ESP

the open-source SoC platform

0O v o Q

The ESP Vision ==

Upcoming tutorial
at ASPLOS 2021

Release 20211.0

Overview

The OHource

SoC Platform fead mors |

=S Architecture

* RISC-V Processors

* Many-Accelerator

* Distributed Memory
* Multi-Plane NoC

/

The ESP architecture implements a

modular and heterogeneous,
giving processors and accelerators
N similar weight in the SoC

distributed system, which is scalable,

/

M.

multi-plane NoC

SH Methodology

Accelerator Flow
* Simplified design

* Automated
integration

SoC Flow

* Mix & match floor-
planning GUI

* Rapid FPGA
prototyping

¥ Tensor
Keras pa
1P
O PyTorch hls 4 ml ::]:I A=4
€ ONNX
HLS
Design
Flows
@ Vivado HLS =
> Stratus HLS - i3
Catapult HLS
cHSEeU)
RTL
Syslcm\'cri]ng‘ 4 Design
P Flows
Verilog
VHDL |

)

5

e,
M~ A

. accelerators

~ =
N

third-party

v

third-party

el
HW IP Library

<
M~

—., Linux apps
.22 bare-metal apps
device drivers

S
e

third-party

SW Library

SoC HW

Integration

SoC

SW Build 2

SoC Configuration

-0x
Acc ¥ Acc ¥ Memw

fcPruw! Acc w [cPUw

Memw [/O w Acc Ww

SoC Generation

FPGA ASIC
Prototyping Design

|i|

= FPGA|

Jasic
i LILIL

=S Methodology

SoC Flow

* Mix & match floor-
planning GUI

e Rapid FPGA
prototyping

ESP SoC Generator

General SoC configuration:

virtexup
ETH FPnew
No [TAG
Eth (192.168.1.2)
Use SGMII
No SVGA
With synchronizers

Data transfers:
" Bigphysical area
+ Scatter/Gather

Cache Configuration:

Cache En.: |
L2 SETS: 512 =
L2 WAYS: 4

LLC SETS:

LLC WAYS: 16—

ACCL2 SETS: 512 =
ACC L2 WAYS: 4

CPU Architecture:

Core: ariane —

NoC configuration
Rows: 2 Cols: |2

Config

[Monitor DDR bandwidth
[~ Monitor memory access
[Monitor injection rate
[~ Monitor router ports

[~ Mbniter accelarbtor stz
[™ Monitor L2 Hit/Miss

™ Monitor LLC Hit/Miss

Num CPUs: 1

Num memory controllers: 1
Num 1O tiles: 1

Num accelerators: 0

Num CLK regions: 1

Num CLKBUF: 0

VF points: ’7

NoC Tile Configuration

empty

FiHas Lz | clcReg:: 0 20 7 HasPht T 0L

I:Has ClkReg:- (0 2] 7 Has &t F=iHas 12 ClicReg: |0 S FiHas PLE (T
(1,0} (1,1)
empty —-| o it

Generate SoC config

cache hierarchy

Consists of private L2 caches and a LLC (Last Level Cache)
Extended MESI directory-based cache coherence protocol
LLC maintains coherence between L2 caches

have L2 caches provided by ESP
typically perform DMA to DRAM, but can also interface with LLC

and optionally have L2 cache

In ESP, accelerators can operate under

O

@)
@)
@)

Non-coherent DMA: No L2 cache, DMA to DRAM only

LLC-coherent DMA: No L2 cache, DMA to LLC with coherence enforced by software flush
Coherent DMA: No L2 cache, DMA to LLC with coherence enforced by protocol

Fully Coherent: Accelerator has L2 cache just like processor cores

=S cache coherence protocol

® Extended MESI directory-based cache coherence protocol
® Cache line states: Modified, Exclusive, Shared, Invalid, (Valid)

TABLE 1
DIRECTORY CONTROLLER’S EXTENDED MESI PROTOCOL.
| REQUESTS | DMA REQUESTS | RESPONSES
| Ges Getm puts PuM Eviet [RENWEEN] Im-Ack Data

read mem, read mem,
I Excl. Data to req, Data to req, Put-Ack to req Put-Ack to req

owner =req / E owner =req / M |

Data to req,

Data to req, Inval. to sharers, P"“'ACRP 4, Pm'Ad‘:o %
S hacars e e = sharers -= req sharers -= req

. i s sha:rt ym !V G last sharer) /V (if last sharer)

Fwd-GetS 10 owner, 1o GotM Put-Ack to req, mc':‘uf'
E sharers+=req+owner, -‘mq if req is owner: if req is %

D owner = 5 owner:

clear owner / S M clear owner / V il /v

Fwd-GetS 10 owner, Fwd-GetM by
M sharers+=req+owner to owner, Put-Ack to req if leqis ret::

D = s owner:
clear owner / S owner = req Yilear /v
Put-Ack to Put-Ack to

<D req, req,
® o o ; = i = _

S cache hierarchy example

SoC
MNoC routers DR:S‘M
mem|
(1 2 3 4 5 6 |
aux acc - NoC |coherence DMA 10/IRQ
------ L planes planes plane.
¥ e
accelerator |PLM (bank) bank) [1 mstr.l L1 data| %
read/write port config port done _;.....2
[} [rofwr Tinval. - g
cache TLB [,’:ﬂf‘ I‘EZ‘?S| | IRQ ‘Lz cache!_ flush
i i 5 5 EE Ry
12 3 4 5 6 1 2 3 6
coherence DMA 10/IRQ |NoC|coherence 10/IRQ
planes planes plane L planes plane]

4x4 tile ESP system

Processor tiles have off-the-shelf L1
cache

ESP provides L2 caches for
Processor tiles and optionally
Accelerator tiles

Memory tiles contain LLC

Cache hierarchy is connected via a
multi-plane NoC (Network-on-Chip)

Improving LLC throughput

® LLCisthe for the SoC
o All L2 caches must interface with LLC
® Throughput of the LLC can limit performance of SoC when

® The current LLC implementation utilizes a multi-cycle data path, only
handling one request per multi-cycle iteration

We implement a

LLC Microarchitecture without pipelining

6-stage multi-cycle datapath controlled by FSM unit

NoC
Interface

Control Logic

LLC
FSM

Control Signals
to all Stages

Stage 2
> Stage 1 > > Address > |, Stage3 | > Stage 4 > > Stage 5 > Stage 6
Load Data
Input Decode into Lookup Process Update
Decode and Read Reqi Tag Request Set
Set A egisters
|—Data—T
Read
L—>{ Directory [« Write
A

Pipelined LLC: Step 1

Distribute control logic across all stages
Implement valid-ready protocol pipeline registers

NoC
Interface

Control Signals LLC
sent into
pipeline Distributed
_________________ gL Control e
v ¥ ¥ v v ¥
Stage 2
Stage 1 > >| Address [] » Stage3 > *| Stage 4 > *| Stage b > Stage 6
L L L _ |Load Data| _ L L L .
Input [«<— «—>{ Decode [«— A inte | <> Lookup |<— «—>| Process «— Update
Decode and Read Regist Tag Request Set
A Set A egisters A
|
Read Data—T
|
L < Write
Directory
Valid-Ready A

Protocol

Pipelined LLC: Step 2

Elimination of read-after-write hazards and read/write collisions

Stall if set
match found in LLC
table
\ Check Table
NoC Y Insert Set — > SetTable =« Retire Set
Interface \
:'l' Y
: Stage 2
"""" > Stage 1 > > Address > » Stage 3 > >l Stage 4 > > Stage 5 [Stage6
L L L ~ |Load Data| L L L L
Input (= <> Decode [|«— 1 into «> <« Lookup |«— «—>| Process [«— <> Update
Decode and Read Registers Tag Request Set

JAN _ fet | JAN _ A _ A - A -

. 1 Read Data—T . - : .

Lo | . : : :

o L «— : Write ! |

o Directory : ; I :

Lo A : : : :

BEELEEEEE LT LT - - - RAW Hazard- - - - -

R L LR Read/Write Collision - = = = = = = = ==« oo '

Pipelined LLC: Step 3

Prevent out-of-order completion of requests

NoC
Interface

Recall Response
from L2

New Requests

in pipeline Check Table
' Insert Set ——> Set Table Retire Set
v ¥ v v
Stage 2
> Stage 1 > Address [» Stage3 > > Stage 4 > > Stage 5 [Stage6
. N L _ |Load Data| N L . .
> Input [«— » Decode [« e | > Lookup <= «—> Process [«—> <> Update
Decode _»| and Read Regist Tag Request Set
Set A egisters A A
| ‘\
Read Data—T 3
| \
L < Write S
Directory '
«
A Categorize Request
FIFO Flush Send out recall to L2
—Requests :

Requests

Pipelined LLC: Step 4

Increase pipeline utilization of DMA requests

LLC
Check Table
NoC Insert Set —> Set Table < Retire Set
Interface DMA
H Request
Generate v
Stage 2
........ > Stage 1 > Address —> > Stage 3 > Stage 4 > > Stage 5] Stage 6
Load Data
T > Input <> Decode < jeTn Pl e Lookup |«—| [« Process <> Update
' Decode 5| and Read Reaist Tag Request Set
Cycle 0, DMA Set /\ egisters /\ /\
Request arrives: A I _T 4 4 R 5 4
Requesting Cache ' Read Data—' | ;! K) ;
Lines 1t0 5 ' L | / K - ’
'I { 7 ‘v’VFi‘u?{)
'. Directory) ; J
-. A / . :
: ; FIFO ,1;\ush .’ ‘
_Req;‘Jesl.-, . _Af_ ,IRequests o :,
Cycle 6, Pipelined LLC: Cache line 5 Cache line 4 Cache line 3 Cache line 2 Cache line 1 !

Cycle 6, Original LLC: Cache line 1

LLC Pipelined Microarchitecture

NoC
Interface

............

LLC
Check Table
Insert Set ——> Set Table = Retire Set
Request
Generate
Y
Stage 2
Stage 1 > > Address > > > Stage 4 > > Stage 5 > Stage 6
Input [« > Decode [« < > <« Lookup > » Process [«— Update
Decode 5| and Read Tag Request Set
Set A |—) A
Read DTia
L < Write
Directory
A
| request FIFO Flush |
equests AN Requests

Verification: RTL simulation for LLC

SystemVerilog testbenches for RTL simulation

Large coverage test for basic functionality Small coverage test for pipeline functionality
[—Req1
Rs 1? Req 1
7 R68 29—
[Req2—— _\Req F—n0uny
Testbench |e———RsP2—— | LLC Testbench Repi—] Lic
[Req3——__ —Rsp 2
«————Rsp3— | —Rsp 3
. Y (] Y

Y . \d
Time

Verification: RTL simulation for full ESP system

Single-core and multi-core simulation of basic “Hello World” program

NoC Tile Configuration

[© Has cache [~ Has DDR W Has cache [~ Has DDR

CkReg: [0 =] [HasPLL [” CLKBUF ClkReg: [0 = [HasPLL [CLKBUF

W Has cache [~ Has DDR [T Has cache [~ Has DDR

ClkReg: [0 3 [HasPLL [7 CLKBUF ClkReg: [0 3 [HasPLL [7 CLKBUF

Verification: FPGA testing

Implementing SoC on FPGA and
running applications

® Small applications:
o Single-core and multi-core “Hello
World”
o Multi-core shared memory and lock
program

® Booting Linux with Ethernet

enabled on Single-core SoC

o Ethernet uses coherent DMA to the
LLC

Picture shows 2-core SoC. Red: CPU, Green:
Memory Tile with LLC, Yellow: I/O Tile

Performance Assessment: Method

Monitor memory access time of 3 different accelerator workloads, compare times
when using LLC without pipelining and with pipelining

® FFT (Fast Fourier Transform)

® Matrix Multiplication (GEMM)

® 2D Convolution (CONV2D)

ESP Performance Monitors API allows monitoring of memory access time only

Performance Assessment: FPGA Implementation

Implement two SoCs, one SoC with
pipelined LLC, one SoC with original
LLC

Workload variables:
® b different sizes from XS to XL

® 2 Coherence Modes
o LLC-Coherent DMA: Accelerators
access LLC after software flush of
L2 caches for coherence
o Coherent DMA: Accelerators access
LLC with coherence enforced by
hardware coherence protocol

NoC Tile Configuration

(0.0}

mem il

[Has cache [~ Has DDR

CkReg: [0 2 [HasPLL [CLKBUF

W' Has cache I~ Has DDR

(1,00

FFT_STRATUS — | Impl.: isic_fx32_dma6 i |

[~ Has cache [~ Has DDR

CkReg: [0 Z [HasPLL [CLKBUF

ClkReg: [0 = [HasPLL [CLKBUF
(1.1)
10 =
10

[~ Has cache I~ Has DDR

CkReg: [0 = [HasPLL [CLKBUF

(2,00

GEMM_STRATUS ~ — | Impl.: 48_dmaﬁ4_wur.';|2|

[~ Has cache [~ Has DDR

M HasPLL [CLK BUF

(2.1)

CONV2D_STRATUS = |Impl.: basic_dma64 _.|

[~ Has cache I~ Has DDR

M HasPLL [T CLKBUF

ClkReg: |0 =

ClkReg: [0 =

Performance Assessment: Speedup Results

® Speedup of memory access times on SoC with pipelined LLC compared to SoC
with original LLC

Speedup is as high as 50%, ranges from 10%-25%

[
mx WS UM EL B4

15

1.0

Speedup

0.5

GEMMW/Coh-DMA CONVZDILLC-DMA COMNVZDICoh-DMA

0.0
GEMMILLC-DMA

FFTILLC-DMA FFTICoh-DMA

Warkload/Coherence Mode

Conclusion

® We implemented pipelining in the ESP Last Level Cache, resolved pipelining
hazards, optimized DMA performance, and enabled concurrent processing of
LLC requests.

® We achieved significant speedup in memory access times of accelerator DMA,
up to Y50% for some workloads with a consistent range of 10% to 25%, and
maintained modularity and scalability of ESP

Verification is still in progress (booting Linux on multi-core configurations), but we
plan to release a version of ESP with the improved cache hierarchy later this year!

Thank you for listening!

WWwW.esp.cs.columbia.edu

l-u
N~

	Diapositiva 1: Pipelining an Open-Source Last-Level Cache
	Diapositiva 2: Motivation
	Diapositiva 3: ESP: An Open-Source Platform for SoC design
	Diapositiva 4: ESP Architecture
	Diapositiva 5: ESP Methodology
	Diapositiva 6: ESP Methodology
	Diapositiva 7: ESP cache hierarchy
	Diapositiva 8: ESP cache coherence protocol
	Diapositiva 9: ESP cache hierarchy example
	Diapositiva 10: Improving LLC throughput
	Diapositiva 11: LLC Microarchitecture without pipelining
	Diapositiva 12: Pipelined LLC: Step 1
	Diapositiva 13: Pipelined LLC: Step 2
	Diapositiva 14: Pipelined LLC: Step 3
	Diapositiva 15: Pipelined LLC: Step 4
	Diapositiva 16: LLC Pipelined Microarchitecture
	Diapositiva 17: Verification: RTL simulation for LLC
	Diapositiva 18: Verification: RTL simulation for full ESP system
	Diapositiva 19: Verification: FPGA testing
	Diapositiva 20: Performance Assessment: Method
	Diapositiva 21: Performance Assessment: FPGA Implementation
	Diapositiva 22: Performance Assessment: Speedup Results
	Diapositiva 23: Conclusion
	Diapositiva 24: Thank you for listening!

