
Efficient Open-source RISC-V Trace Generation for
Enabling Reuse in Computer Architecture Research

Gokulakrishnan Ranghamannar, Gopalakrishnan Srinivasan,
Karthik Sankaranarayanan

Dept. of Computer Science and Engineering,

Indian Institute of Technology, Madras

OSCAR 2025

Gokulakrishnan R Efficient RISC-V Trace Generation OSCAR 2025 1 / 12



Introduction

RISC-V Growth: Two proprietary ISAs, x86 and ARM, dominate the
world, but limit extension and customization. RISC-V is rapidly
gaining traction as an open-source alternative.

Research Gap: Lack of industry-level toolchains for RISC-V
compared to proprietary ISAs.

µ-arch Simulators: Execution-driven vs Trace-driven.

Our Pipeline: Efficient trace generation for RISC-V µ-arch
simulation.

Gokulakrishnan R Efficient RISC-V Trace Generation OSCAR 2025 2 / 12



Introduction

RISC-V Growth: Two proprietary ISAs, x86 and ARM, dominate the
world, but limit extension and customization. RISC-V is rapidly
gaining traction as an open-source alternative.

Research Gap: Lack of industry-level toolchains for RISC-V
compared to proprietary ISAs.

µ-arch Simulators: Execution-driven vs Trace-driven.

Our Pipeline: Efficient trace generation for RISC-V µ-arch
simulation.

Gokulakrishnan R Efficient RISC-V Trace Generation OSCAR 2025 2 / 12



Introduction

RISC-V Growth: Two proprietary ISAs, x86 and ARM, dominate the
world, but limit extension and customization. RISC-V is rapidly
gaining traction as an open-source alternative.

Research Gap: Lack of industry-level toolchains for RISC-V
compared to proprietary ISAs.

µ-arch Simulators: Execution-driven vs Trace-driven.

Our Pipeline: Efficient trace generation for RISC-V µ-arch
simulation.

Gokulakrishnan R Efficient RISC-V Trace Generation OSCAR 2025 2 / 12



Introduction

RISC-V Growth: Two proprietary ISAs, x86 and ARM, dominate the
world, but limit extension and customization. RISC-V is rapidly
gaining traction as an open-source alternative.

Research Gap: Lack of industry-level toolchains for RISC-V
compared to proprietary ISAs.

µ-arch Simulators: Execution-driven vs Trace-driven.

Our Pipeline: Efficient trace generation for RISC-V µ-arch
simulation.

Gokulakrishnan R Efficient RISC-V Trace Generation OSCAR 2025 2 / 12



Introduction

RISC-V Growth: Two proprietary ISAs, x86 and ARM, dominate the
world, but limit extension and customization. RISC-V is rapidly
gaining traction as an open-source alternative.

Research Gap: Lack of industry-level toolchains for RISC-V
compared to proprietary ISAs.

µ-arch Simulators: Execution-driven vs Trace-driven.

Our Pipeline: Efficient trace generation for RISC-V µ-arch
simulation.

Gokulakrishnan R Efficient RISC-V Trace Generation OSCAR 2025 2 / 12



Related Work

Spike:
Reference functional model of the RISC-V foundation.
Instruction-level model and hence quite slow.

Dromajo:
Co-simulation infrastructure for RISC-V.
Requires modifying the source code.
Can’t generate kernel traces.

FireSim:

FPGA-Accelerated Cycle-Exact Scale-Out System Simulation.
Requires RTL.
Specialized hardware knowledge required to generate application traces.

Gokulakrishnan R Efficient RISC-V Trace Generation OSCAR 2025 3 / 12



Related Work

Spike:
Reference functional model of the RISC-V foundation.
Instruction-level model and hence quite slow.

Dromajo:
Co-simulation infrastructure for RISC-V.
Requires modifying the source code.
Can’t generate kernel traces.

FireSim:

FPGA-Accelerated Cycle-Exact Scale-Out System Simulation.
Requires RTL.
Specialized hardware knowledge required to generate application traces.

Gokulakrishnan R Efficient RISC-V Trace Generation OSCAR 2025 3 / 12



Related Work

Spike:
Reference functional model of the RISC-V foundation.
Instruction-level model and hence quite slow.

Dromajo:
Co-simulation infrastructure for RISC-V.
Requires modifying the source code.
Can’t generate kernel traces.

FireSim:

FPGA-Accelerated Cycle-Exact Scale-Out System Simulation.
Requires RTL.
Specialized hardware knowledge required to generate application traces.

Gokulakrishnan R Efficient RISC-V Trace Generation OSCAR 2025 3 / 12



Related Work

Spike:
Reference functional model of the RISC-V foundation.
Instruction-level model and hence quite slow.

Dromajo:
Co-simulation infrastructure for RISC-V.
Requires modifying the source code.
Can’t generate kernel traces.

FireSim:

FPGA-Accelerated Cycle-Exact Scale-Out System Simulation.
Requires RTL.
Specialized hardware knowledge required to generate application traces.

Gokulakrishnan R Efficient RISC-V Trace Generation OSCAR 2025 3 / 12



Approach Overview

Trace Format: Sparta defines the Simple Trace Format (STF) and
provides a C++ API to use it.

Trace-driven Component: Any microarchitectural simulator that
supports the STF trace format.

Execution-driven Component: QEMU full system emulator enables
execution-driven high-speed functional modeling for RISC-V.

ROI Selection: We use SimPoint to extract representative regions of
interest.

Gokulakrishnan R Efficient RISC-V Trace Generation OSCAR 2025 4 / 12



Approach Overview

Trace Format: Sparta defines the Simple Trace Format (STF) and
provides a C++ API to use it.

Trace-driven Component: Any microarchitectural simulator that
supports the STF trace format.

Execution-driven Component: QEMU full system emulator enables
execution-driven high-speed functional modeling for RISC-V.

ROI Selection: We use SimPoint to extract representative regions of
interest.

Gokulakrishnan R Efficient RISC-V Trace Generation OSCAR 2025 4 / 12



Approach Overview

Trace Format: Sparta defines the Simple Trace Format (STF) and
provides a C++ API to use it.

Trace-driven Component: Any microarchitectural simulator that
supports the STF trace format.

Execution-driven Component: QEMU full system emulator enables
execution-driven high-speed functional modeling for RISC-V.

ROI Selection: We use SimPoint to extract representative regions of
interest.

Gokulakrishnan R Efficient RISC-V Trace Generation OSCAR 2025 4 / 12



Approach Overview

Trace Format: Sparta defines the Simple Trace Format (STF) and
provides a C++ API to use it.

Trace-driven Component: Any microarchitectural simulator that
supports the STF trace format.

Execution-driven Component: QEMU full system emulator enables
execution-driven high-speed functional modeling for RISC-V.

ROI Selection: We use SimPoint to extract representative regions of
interest.

Gokulakrishnan R Efficient RISC-V Trace Generation OSCAR 2025 4 / 12



Approach Overview

Trace Format: Sparta defines the Simple Trace Format (STF) and
provides a C++ API to use it.

Trace-driven Component: Any microarchitectural simulator that
supports the STF trace format.

Execution-driven Component: QEMU full system emulator enables
execution-driven high-speed functional modeling for RISC-V.

ROI Selection: We use SimPoint to extract representative regions of
interest.

Gokulakrishnan R Efficient RISC-V Trace Generation OSCAR 2025 4 / 12



SimPoint

Basic Block Vectors (BBV): The frequency map of the number of
instructions executed in each basic block for a given interval of
instructions.
Similarity Matrix: (x , y) indicates the normalized distance between
BBV x and BBV y .

Figure: Example BBV Similarity Matrix (100M intervals)

Gokulakrishnan R Efficient RISC-V Trace Generation OSCAR 2025 5 / 12



Design Choice - Quick Emulator (QEMU)

QEMU allows running unmodified guest operating systems and
supports emulating different CPU architectures.

TCG Plugin Support: QEMU supports TCG plugins that can
register callbacks during code translation and execution

Two TCG Plugins:
To generate BBVs - 1B instruction intervals - to be consumed by
SimPoint (Link).
To generate STF traces - 1B warmup instructions per simpoint - to be
consumed by µ-arch simulator (Link).

Gokulakrishnan R Efficient RISC-V Trace Generation OSCAR 2025 6 / 12

https://gitlab.com/shaktiproject/tools/trace-gen/-/blob/c28935afe09427633a75283224614cca38867ebd/plugins/bbv.c
https://gitlab.com/shaktiproject/tools/trace-gen/-/blob/c28935afe09427633a75283224614cca38867ebd/plugins/stfmemquic.c


Design Choice - Quick Emulator (QEMU)

QEMU allows running unmodified guest operating systems and
supports emulating different CPU architectures.

TCG Plugin Support: QEMU supports TCG plugins that can
register callbacks during code translation and execution

Two TCG Plugins:
To generate BBVs - 1B instruction intervals - to be consumed by
SimPoint (Link).
To generate STF traces - 1B warmup instructions per simpoint - to be
consumed by µ-arch simulator (Link).

Gokulakrishnan R Efficient RISC-V Trace Generation OSCAR 2025 6 / 12

https://gitlab.com/shaktiproject/tools/trace-gen/-/blob/c28935afe09427633a75283224614cca38867ebd/plugins/bbv.c
https://gitlab.com/shaktiproject/tools/trace-gen/-/blob/c28935afe09427633a75283224614cca38867ebd/plugins/stfmemquic.c


Design Choice - Quick Emulator (QEMU)

QEMU allows running unmodified guest operating systems and
supports emulating different CPU architectures.

TCG Plugin Support: QEMU supports TCG plugins that can
register callbacks during code translation and execution

Two TCG Plugins:
To generate BBVs - 1B instruction intervals - to be consumed by
SimPoint (Link).
To generate STF traces - 1B warmup instructions per simpoint - to be
consumed by µ-arch simulator (Link).

Gokulakrishnan R Efficient RISC-V Trace Generation OSCAR 2025 6 / 12

https://gitlab.com/shaktiproject/tools/trace-gen/-/blob/c28935afe09427633a75283224614cca38867ebd/plugins/bbv.c
https://gitlab.com/shaktiproject/tools/trace-gen/-/blob/c28935afe09427633a75283224614cca38867ebd/plugins/stfmemquic.c


Design Choice - Quick Emulator (QEMU)

QEMU allows running unmodified guest operating systems and
supports emulating different CPU architectures.

TCG Plugin Support: QEMU supports TCG plugins that can
register callbacks during code translation and execution

Two TCG Plugins:
To generate BBVs - 1B instruction intervals - to be consumed by
SimPoint (Link).
To generate STF traces - 1B warmup instructions per simpoint - to be
consumed by µ-arch simulator (Link).

Gokulakrishnan R Efficient RISC-V Trace Generation OSCAR 2025 6 / 12

https://gitlab.com/shaktiproject/tools/trace-gen/-/blob/c28935afe09427633a75283224614cca38867ebd/plugins/bbv.c
https://gitlab.com/shaktiproject/tools/trace-gen/-/blob/c28935afe09427633a75283224614cca38867ebd/plugins/stfmemquic.c


Clustering and Silhouette Analysis

Clustering algorithm: We use both DBSCAN and K-Means
algorithms to cluster the BBVs.

Distance metric: To measure the distance between BBVs, we use
the cosine distance.

Evaluating clusters: To evaluate the clustering, we use silhouette
scores. In case of DBSCAN, we assign outliers to their nearest
clusters.

Gokulakrishnan R Efficient RISC-V Trace Generation OSCAR 2025 7 / 12



SPEC CPU2017 Results

Benchmark Icount (Billions) No. of Clusters Silhouette Score Slowdown

500.perlbench r checkspam 1489 1 NA 1.421
500.perlbench r diffmail 962 3 0.9412 1.458
500.perlbench r splitmail 877 3 0.9533 1.394
502.gcc r pp.opts-O2 304 7 0.6417 1.421
502.gcc r pp.opts-O3 254 6 0.6043 1.438
502.gcc r smaller.opts-O3 352 3 0.6617 1.363
502.gcc r ref32.opts-O3 349 19 0.664 1.423
502.gcc r ref32.opts-O5 242 23 0.5656 1.439
503.bwaves r 1 521 11 0.8994 1.042
503.bwaves r 2 822 2 0.8682 1.031
503.bwaves r 3 641 2 0.8795 1.037
503.bwaves r 4 780 9 0.8793 1.091
505.mcf r 885 5 0.7789 1.300
507.cactuBSSN r 4202 7 0.92 1.065
508.namd r 2064 18 0.8417 1.059
511.povray r 4878 1 NA 1.157
519.lbm r 1485 1 NA 1.068
520.omnetpp r 1283 1 NA 1.302
523.xalancbmk r 1321 2 0.9745 1.446
526.blender r 2143 5 0.9371 1.185
531.deepsjeng r 2209 2 0.9069 1.349
538.imagick r 4738 3 0.9965 0.959
541.leela r 3200 1 NA 1.225
544.nab r 2089 5 0.9441 1.100
548.exchange2 r 4230 2 0.9042 1.535
549.fotonik3d r 2796 2 0.8254 1.019
554.roms r 3300 6 0.8397 1.080
557.xz r cld 464 3 0.9737 1.219
557.xz r cpu2006docs 1160 18 0.5838 1.529
557.xz r input.combined 645 3 0.8255 1.400

Average 1690 5.8 0.83 1.25

Gokulakrishnan R Efficient RISC-V Trace Generation OSCAR 2025 8 / 12



SPEC CPU2017 Results - Summary

We achieve an average silhouette score of 0.83 for SPEC CPU2017
rate benchmarks run with the reference input set.

Instrumentation Speed: Billions of instructions per second.

Trace Generation Speed: Millions of instructions per second.

We achieve a two orders of magnitude reduction in the simulation
load compared to the full runs.

Gokulakrishnan R Efficient RISC-V Trace Generation OSCAR 2025 9 / 12



Trace Generation for Linux Boot

We generated traces for the boot of Ubuntu 25.04 (Plucky Puffin)
image.
Clustering analysis of this data results in 8 representative clusters with
a silhouette score of 0.31.

Figure: Cosine distance similarity matrix for linux boot

Gokulakrishnan R Efficient RISC-V Trace Generation OSCAR 2025 10 / 12



Discussion and Future Work

Work is part of the RISC-V Open Software for Architecture (ROSA)
project at IIT Madras.

RISC-V Trace Generator and Traces (Link):

Future Work
Need to address the large sizes of STF trace files (0.5 bytes per
instruction recorded on average).
Predictive capability of the generated trace snippets should be
validated against the full application runs.

For feedback or questions, please contact:

Gokul: rgokul.4204@gmail.com
Karthik: karthiksankaranarayanan@iitmpravartak.net
Gopal: sgopal@cse.iitm.ac.in

Gokulakrishnan R Efficient RISC-V Trace Generation OSCAR 2025 11 / 12

https://linktr.ee/tracegen
mailto:rgokul.4204@gmail.com
mailto:karthiksankaranarayanan@iitmpravartak.net
mailto:sgopal@cse.iitm.ac.in


Thank You

Gokulakrishnan R Efficient RISC-V Trace Generation OSCAR 2025 12 / 12


	Introduction
	Approach Overview
	Discussion and Future Work

