Automatically Uncovering Hardware Side-Channels
In Processor RTL with Multi-uPATH Synthesis

Yao Hsiao', Nikos Nikoleris?, Artem Khyzha?, Dominic P. Mulligan?,
Gustavo Petri3, Christopher W. Fletcher?, Caroline Trippel’

1Stanford University, 2Arm, SAmazon Web Service, *University of California, Berkeley
Original Work is published in 2024 International Symposium on Microarchitecture (MICRO)

2025 OSCAR workshop

Stanford University

Design Abstraction Helps Scale Formal Hardware Verification

Example: The Check Tools automate memory consistency model (MCM) and
security verification of processor microarchitectures.

CheckMate [MICRO’18] <
PipeProof [MICRO’18]

RTLCheck [MICRO’17] ™

Stanford University

—

—

High-Level Language

Compiler OS

Architecture (ISA)

A

\V

.

Abstract
Microarchitectural Model

A

J

'

RTL (e.g., SystemVerilog)

> TriCheck [ASPLOS’17]
COATCheck [ASPLOS’16]

T

— PipeCheck [MICRO’14]
CCICheck [MICRO’15]

—

Omit details not relevant for the verification task

Axiomatic Microarchitectural Models Enable Formal Analysis

[Lustig+, ASPLOS’16]

(Axiom Ld exe path:

forall microops 1i,

Microarchitectural

Execution Path (LPATH)

Axioms Per-Instruction
AddEdges [((1, IF), (1, DX));
((i, DX), (i, WB));]
\// Other axioms...

\

Y
Y CL

N

<

Formal Hardware Consistency
Model and Security Verification
with the Check Tools

High-Level Language

Abstract Microarchitectural
Model: YSPEC Model

First order logic axiomatic model of a
microarchitecture:

1

* Omits combinational logic details
e Retains microarchitectural events

RTL (e.g., SystemVerilog)

> TriCheck [ASPLOS’17]
COATCheck [ASPLOS’16]

”

— PipeCheck [MICRO’14]
CCICheck [MICRO’15]

and their orderings

Axiomatic Microarchitectural Models Enable Formal Analysis

Axiom Ld_exe path:
forall microops 1i,

Microarchitectural

Execution Path (LPATH)
Axioms Per- Instructlon

/pPATH: Models a specific
execution of a specific

dynamic instruction on a
specific microarchitecture

as a directed “happens-before”

\ graph [Lustig+, MICRO"14].

Axiom Ld exe path:
forall microops i,
IsAnyRead i = truction
miss_upath OR hit_upath. gpecific

Lset of state elements (row).

Dynamic

Set of state

Formal Hardware ConS|stency elements

odel and Security Verlflcatlon

WB

R 0 Check-rEdg.gze Happens-before
Lrelatlonshlp between nodes ==

L1$ I :

\---’

Abstract Microarch
Model: uSPEC Model J

Cache miss p Cache hit
MPATH A pPATH

IF§ DX JwB

1

J

Stanford University

L1
mem

RTL (e.g., SystemVerilog)

3-stage processor

Verification Challenge: How to Verify that a uSPEC Accurately
Represents a SystemVerilog Microarchitecture

USPEC looks quite different
from SystemVerilog!

(Axiom Ld exe path:
forall microops i, ~
IsAnyRead i = Formal Hardware Consistency
AddEdges [((i, IF), (i, DX)); Model and Security Verification
\, ; | with the Check Tools
- 6Haljldwntten < éways @(posedge clk) begin
;é;;dufﬁ)’[(g?’ ?E;);g'\/ox)) Abstract Microarchitectural if (Irst_n) begin
ges 1, b 1, 5 .
s B0 (s] Model: uSPEC Model | L
\ // Other axioms... y

QDeS|gner Inspectlon
Problem: Does uSPEC

I0 Op <= 1IT_0p,
MSPEC-RTL id_ex_vld <= if_ex_vld;
accurately represent the RTL? Verification Gap K
RTL (e.g., SystemVerilog) \f/
Stanford University

Roadmap

Synthesizes all WPATH axioms required to
define a formally verified pspec model (i.e.,

~50% of uspec model).

* RTL2MpJPATH: Synthesizing (“Uncovering”) All yPATHSs per Instruction from
Advanced SystemVerilog Processors

* Key Insight: yPATH Variability (>1 yPATH) is a Strong Indicator of a
Hardware Side-Channel

* SynthLC: Synthesizing Formally Verified “Leakage Signatures”

from SystemVerilog Processors

Application of yPATH synthesis for uncovering all hardware side-channels!

Stanford University

Roadmap

* RTL2MpPATH: Synthesizing (“Uncovering”) All uPATHSs per Instruction from
Advanced SystemVerilog Processors

Stanford University

Overview of RTL2ZMuPATH: Multi-uPATH Synthesis from RTL

[SystemVerilog]_
Processor Design RTL2MuPATH

[Instruction Encodings]—

[Designh Metadata]—

Stanford University

Overview of RTL2ZMuPATH: Multi-uPATH Synthesis from RTL

visits mulU by putting its PC value the
the activei mulU’s MUL’s own (N) operands

ALU
LSU

Multiplication Unit (mulU)

= return fast_path # 1 cyc
0x42 MUL |3X WBi returnslow_path | #3 cyc,

L1$ Zero-Skip Optimization

mem

[SystemVerilog]_
Processor Design RTL2MuPATH

[Instruction Encodings]—

[Designh Metadata]—

Stanford University

Overview of RTL2ZMuPATH: Multi-uPATH Synthesis from RTL

ALU
LSU .
'MUL_mulU(MULNi0):)
'I,-_' if (i0.0p0==0 |
Multiplication Unit (mull) 10.0p1 == 0):
— = return fast_path # 1 cyc
IF [DX WB || return slow_path #3 cyc,
L1$ Zero-Skip Optimization
mem -~
[SystemVerilog]_ ? Netlist Analysis assert (property)
Processor Design & | SystemVerilog Assertion (SVA)
[]_ RTL2MuPATH g _‘ci Generation from Templates
Instruction Encodings R
Model Checkin
. & /\

[Designh Metadata]—

Stanford University

prove assert (property)

10

Overview of RTL2MuPATH: Multi-uPATH Synthlﬁis from RTL
2\ AlLADD pPATHSs

Multiplication Unit (mulU) "

éycle-accurate
HPATHs (new!):
Nodes: State

Edges: 1-cycle

updates inacycle

> ALl MUL pPATHSs
MUL MUL

'MUL_mulU(

10.0p1 ==

if (i0.0p0 ==

return fast_path # 1 cyc

MULNiO):)

O]
):

Jeturnislow_path | # 3 cyc

- IF
K happens—beforeJID 8

Stanford University

cyc 1
cyc 2

cyc 3

\
N\

Zero-Skip Optimization
m Complete set of yPATHs

for each instruction

11

Conceptualizing Nodes in a yPATH: A Key Challenge to Automated

UPATH Discovery with RTL2ZMuPATH
ALU || op0 J
LSU || op1 (MUL\
pc_i IF
Multiplication Unit (mull) " 1D
\? DX W acc(1)
Li$ acc(2)
mem acc(3)

SystemVerilog WB
Processor Design \. J
' ‘ All reachable

cover (MUL exhibit uPATH)

| MUL pPATHSs
Asks a model checker | J E
whether yPATH is reachable
Stanford University by MUL in any execution.

> x Discard unreachable MUL uPATHs

12

Conceptualizing Nodes in a pPATH: A Key Challenge to Automated
HPATH Discovery with RTLZMUPATZEMW instructionq

colors) in-flight a
RISC-V CVA6 Core [Zarub%l(- VLSI’19]

How to recognize a h

the same time!

Frontend ID commit/ 1 £ node? Requires detecting
i sq sp stb cm_stb . .
issue — | e [MUL & attrlpqtlpg state.update
B > Idunit h ‘ v . /\to specific instructions y
regfile I > mem
PC [1d_buff je—
_’Mux ID
branch unit —
scoreboard
isud |...|pc|xpt|vld aCC(1)
e acc(2)
| acc(3)
SystemVerilog WB
Processor Design \. J

cover (MUL exhibit pPATH) 2V 4 4{ ﬁbrfa‘;ﬁ_bl_ll:
Asks a model checker J H

whether yPATH is reachable
Stanford University by MUL in any execution.

> X Discard unreachable MUL uPATHs

13

Our Solution: Expressing Nodes in uPATHs using Micro-op Finite
State Machines (UFSMs) from a Processor’s Control Path

ALU

LSU

Instruction-identifying register (lIR), 7
e.g., register holding PC value.

.g., its PC) in the yFSM’s IIR.

J

(
|_\emem

SystemVerilog
Processor Design

Stanford University

State variables,
i encoding a concrete
Multj *ag Unit (mulU)
. : . . .)
ox42 M{An instruction occupies/ visits a

| uFSM by putting a unique identifier

Micro-op Finite State Machine (UFSM): _‘O?
* <|IR, stateVars> tuple ’
* Orchestrate instruction execution from

fetch until possibly after commit

\

(Control instruction state updates per—cycle)

14

Our Solution: Expressing Nodes in uPATHs using Micro-op Finite
State Machines (UFSMs)
‘l stateVarsl

mte Machine (uFSM): N)

* <IIR, stateVars> tuple Qs
* Orchestrate instruction execution from
fetch until possibly after commit

(Control instruction state updates per—cycle)

ALU
LSU

MUL
|F
‘ PCR == 0x42 &&
ID ‘ D ctrl == sMUL]
sMUL(1)

Updates: acgc, ... Updates: acc, ..

MUL updates acc 1
when ctrl == sMULJ

Stanford University 15

Our Solution: Expressing Nodes in uPATHs using Micro-op Finite
State Machines (UFSMs)

ALU
LSU

‘l stateVars |

 <|IR, stateVars> tuple
* Orchestrate instruction execution from
fetch until possibly after commit

Stanford University

Updates: acgc, ...

Updates: acgc, ..

MUL updates acc
when ctrl == sMU

J

mte Machine (uFSM): N)

Q.

(Control instruction state updates per—cycle)

(PL): Concrete non-

Performing location
idle state of a uFSM

MUL
IF
ID PCR == 0x42 &&
ctrl == sMUL
sMUL(1)

RTL2MuPATH: Synthesizing uPATHs from Processor Design

= ==

pcr| T SMUL D

G SGrme
Multiplication Unit (mulU)

IF|DX WB”

L15

mem

[Design Metadata] RTL2MpPATH
(

including pFSMs)

RTL2MuPATH: Synthesizing uPATHs from Processor Design

= ==

pcr| T SMUL D

G SGrme
Multiplication Unit (mulU)

IF D_X WB”

L1$
mem

SystemVerilog
Processor Design
[Instruction Encodings]—

Design Metadata
(including pFSMs)

Step 1: Synthesizing sets of nodes
RTL2MpuPATH that can form reachable yPATHs

RTL2MuPATH: Synthesizing uPATHs from Processor Design

ALU O Step 1: Synthesizing sets of nodes
S SIDLE that can form reachable pPATHs
. -y
Multiplication Unit (mulU) Ask a model checker...| U
MUL MUL MUL MUL Can any instruction
LF DX WB” visit <PL>?
L1$ ir O O
mém n PLs sMUL O O O Can <inst> visit <PL>?
SystemVeri[og SFIN O O l Can <inst> visit <PL1>
Processor Design WB 9 O C)J without visiting <PL2>?
“h Can <inst> visit both
[Instruction Encodings |+ Worst case: 2 sets (n > 40) <PL1> and <PL2>?
. - Step 1A: Enumerate all possible Step 1B: SVA property-driven
Design Metadata PLs (concrete pFSM states) UPATH pruning
(including uFSMs) with netlist analysis 19

RTL2MuPATH: Synthesizing uPATHs from Processor Design

ALU
N

’»
] (SR

Multiplication Unit (mulU)

SIDLE

TF[DX[WB]]
L15
mem

n

|

SystemVerilog
Processor Design

]_

[Instruction Encodings]—

g

Design Metadata
including pFSMs)

IF
PLs < sMUL

Step 1: Synthesizing sets of nodes
that can form reachable pPATHs
Step 2: Synthesizing full pRAFdsdnecke Details in

¢Sefe <1 the paper!
sMUL, WB>ibut no

others (e.g., N)?
X WV K

MUL MUL

IF IF O

MUL MUL
SFIN ‘ ” Q‘s O

]_

pFSM states) with
netlist analysis

<FIN <EIN O Candidate
WB ... sets of nodes
ws O ws O (10s to ~1k)
Step 1A: Enumerate all Step 1B: SVA Step 1C: Embed node
=) possible PLs (concrete property-driven sets as SVA properties

MPATH pruning to deduce reachability
20

Roadmap

 Key Insight: yPATH Variability (>1 yPATH) is a Strong Indicator of a
Hardware Side-Channel

Stanford University

21

Operand-Dependent yPATH Variability on a Microarchitecture
Implies Existence of Hardware Side-Channels

A typical pattern of victim program MUL
in a classic side-channel attack: IF IF
unsafe_instruction secret ID 8
Example on toy processor: sMUL(1) sMUL(1) é
MUL secret opT sMUL(2) sMUL(2)
sFIN sFIN
WB \m\‘ g
G\n instruction that creates and exhibits R K/\ fast ”PATHJ
operand-dependent yPATH variability slow uPATH ,,,,,, Infer MUL’s secret
(>1 yPATH) can leak its operand(s) via a , :EE based on which pPATH
\hardware side-channel! / -Gmml= MUL exhibits at runtime!

Stanford University 22

Operand-Dependent yPATH Variabilities on a Microarchitecture
Imply Existence of Hardware Side-Channels

A more subtle pattern of victim secret != public secret == public
program in a side-channel attack: ST LD ST LD
unsafe_instruction secret ©FB\ ®FB\,,
unsafe_instruction public issue issue
Example on RISC-V CVAG6 Core: ldstall ldStall

ldFin ldFin

non-stall yPATH stall |.|PATH

Infer ST’s secret n
based on which yPATH !in-
LD exhibits at runtime!

ST [secret]
LD [public]

-l'l(ﬂ[

CVAG6 [Zaruba+, VLSI'19]

Stanford University 23

Hardware Side-Channel Defenses for a Microarchitecture Minimally
Requires ldentifying Unsafe Instructions that Leak Their Operands

A typical pattern of victim program in a A more subtle pattern of victim program in
classic side-channel attack: a side-channel attack:

Iunsafe instruction secrett\ /-Iunsafe_instruction secretl

unsafe_instruction public

MUL
"= g 8 : LD LD
ID E innnni STB Om‘
sMUL(1) é Creates operand-dependent ISSUE
sMUL(2 hardware resource usage, which ldStall
manifests as operand-dependent _ —
SFlN upath variability for or ldFin 9,
WB é some other instruction (=) : :

non-stall stall

slow fast Explicit channel Implicit channel WPATH LPATH
UPATH pPATH ¢ >

Stanford University 24

Hardware Side-Channel Defenses in Hardware or Software Require
Characterizing a Microarchitecture’s Side-Channels

Defenses
T [e.g., Cauligi+, SecDev’17], SCT [Mosier+, SP’24],

SpecShield [Barber+, PACT’19], ConTExt [Schwarz+, NDSS’20]

Microarchitectural Components

unsafe_instruction secret

i ||~

:‘ 5

Designer
Inspection!

r »d #9

RTL

Processor #6
Design

Stanford University

MI6 [Bourgeat+, MICRO’19]

Contention-based dynamic channels

Static channels

#A4]sSDo [Yu+, ISCA’20]

OISA [Yu+, NDSS’19

STT [Yu+, MICRO’19]

SPT [Choudhary, MICRO’21]

SDO [Yu+, ISCA’20]

Input-dependent arithmetic units
Explicit channel

Implicit channel

Implicit branches

Prediction-based channels

Resolution-based channels

Data-oblivious variants

Dolma [Loughlin+, ISCA’21]

Variable-time micro-ops

Contention-based dynamic channels

Inducive micro-ops

Resolvent micro-ops

Prediction resolution points

Persistent state modifying micro-ops

25

Roadmap

Foundational to the

* SynthLC: Synthesizing Formally Verified [‘Leakage Signatures”| design of hardware

. side-channel defenses
from SystemVerilog Processors

Stanford University 26

SynthLC: Attributing uPATH Variability to Unsafe Instruction Operands
and Synthesizing Formally-Verified Leakage Signatures

MUL MUL

I':(MUL,0p0@), (MUL, opl) %
X:(SUB, op@), ... 1D \)
- J sMUL(1)

L

Ask a model checker if SMUI—(2)
contributes to
the divergence using symbolic sFIN
information flow analysis WRB é
SystemVerilog) slow yPATH fast uPATH

Processor Design

allopera
varla'l?)olltty Side-c-— -

Defense #1

arm [L&

unsafe_instruction secret

n

to
[instruction operands under]

8peHEARIHBERNLT AT

J
Instruction Encodings = { ! Details
All yPATHSs Per in the
Design Metadata Instruction paper!

Stanford University

27

SynthLC Synthesizes a Complete Set of Verified Leakage Signatures...

Instruction exhibiting
UPATH variability

unsafe operands

unsafe instructions

muludMULNﬁ)?

Characterizes a specific 1

instance of unsafe- ==0 |
instruction-operand- 10.0p1}==0):
dependent yPATH return {WB} y
variability for a specific

instruction, i.e., a side- (etum {SMUL})
channel.

SystemVerilog
Processor Design

Stanford University

/ IMuL mul
IF

ID
sMUL(1)
sMUL(2)

sFIN

WB O

slow pyPATH fast uPATH

28

SynthLC Synthesizes a Complete Set of Verified Leakage Signatures...
unsafe instructions

(A /
/f D 2\ Details in the paper!

~ O_

i L IMulmutuMuiN e Ve N
Characterizes a specific | g0 L N ..
instance of unsafe- if (10.0p0==0 || T Intrinsic (same)
instruction-operand- 10.0p1 == 0): D ,
dependent uPATH return {WB} 1o Dynamic (older)
variability for a specific D :
instruction, i.e., a side- Jeturn {sMUL} y Ty Dynamic (younger)
channel.

\TS Static (older) /

Runtime conditions for
unsafe instruction to create

SystemVerilog UPATH variability
Processor Design

Stanford University 29

SynthLC Synthesizes a Complete Set of Verified Leakage Signatures...

instruction exhibiting source of yPATH divergence

UPATH variability

unsafe operands

Characterizes a specific
instance of unsafe-
instruction-operand-
dependent yPATH
variability for a specific
instruction, i.e., a side-
channel.

UPATH divergence
destination

Stanford University

unsafe instructions

/ |MUL MULl

[

SystemVerilog
Processor Design

]

sMUL(2)
sFIN
WB

slow pyPATH fast uPATH

ID
sMUL(1)

30

#1

#2
#3

4

#5

#6

Leakage Signatures: A Unifying Framework for Characterizing

1Ide- source of yPATH
Hardware_ Slde .Channels' N divergencs unsafe instructions unsafe operands
instruction exhibiting uPATH variability
, , \/\ eakage S&ature Components
Defenses Microarchitectural Components HPAT =
src ™ TP TS args
CT[e.g., Cauligi+, SecDev’17], SCT
[Mosier+, SP’24], SpecShield [Barber+, |unsafe_instruction secret - - - 4 4 v v
PACT’19], ConTExt [Schwarz+, NDSS’20]
, Contention-based dynamic channels - V \/ V \/ - -
MI6 [Bourgeat, MICRO’19] Static channels - 7 " - - 7 -
OISA [Yu+, NDSS’19] Input-dependent arithmetic units - - L4 4 - - L4
Explicit channels - 4 L4 4 - - v
STT [Yu+, MICRO’19] Implicit channels - 4 4 - « L4 L4
SDO [Yu+, ISCA’20] Implicit branches - 4 - - 4 4 4
SPT [Choudhary, MICRO’21] Prediction-based channels - 4 L4 - - LV 4 L4
Resolution-based channels - 4 « - 4 - «
SDO [Yu+, ISCA’20] Data-oblivious variants « - - V4 - - v 4
Variable-time micro-ops - - - 4 - - 4
Contention-based dynamic channels - 4 L4 4 4 - v
Dolma [Loughlin+, ISCA’21] Inducive micro-ops - v - - v - v
’ Resolvent micro-ops - - - - 4 - v
Prediction resolution points - 4 4 - 4 - v
Persistent state modifying micro-ops - - - - - « «

(anrora UILVCISILY

CVAG Core and Cache Case Study

= Open-source RISC-V CVA6 processor

= 64-bit, 6-stage, single-issue core

. o Frontend ID commit/ EXE
= Speculation and limited out-of-order n dssue n T psth L ousth
. o o . o — st_uni N uni i
write-back with diverse functional units ” —] g ECRTILE, §
. | | regfile[| > mem
(ALU, LSU, Mul/Div, CSR buffer) — [l e
. L. " |Mux il —[ALU_ |}
= Write-through set-associative cache — e [—[branch ubit]—
PHT/ scoreboard
= 72 instructionsin RV64l base ISA+ M e } isud ... pc | xpt|vid
extension (RV64IM) - I | N s
o

= Synthesize leakage signatures separately
(~modularity) from Core and Data Cache CVAG6 Core [Zaruba+, VLSI’19]
respectively
First formal side-channel

analysis of arealistic

processor cache!
Stanford University 32

26 unsafe instruction

CVAG Core: Results

~

Int. Insts
3l2(3[2|3[3| Colored cell: An instruction
r e N\
Ipt-thsts Branch CSRR Bl'anCh N (COlumn) eXthItS “path L[BHW]U| Store: SB, 5D, SH, SW
N3232333 gg*uza D VarlabllltyasafunCtIOHOf 2(2(3(22(3(2|2|3/12|12)6/3/13|6/3/4/3
Branchig = N . . = e E———
piv=+[N / DIV* D unsafe instruction (row)’s
JALR 5 S
o~ § JALR N operands I'_:_|—
REM*Q H UPATH variability depends =
51iJlIrru'lzt,':‘l'lnﬁts\. DD, ADDW, AND, OR, 5LL, 5LL Load D on bOth Opel‘ands Of , LU, AUIPIC — Env.: EBREAK, EDiLIE
— Branch: BEONgGE, BGEU, BLT, BLTU, BME g LLW, MULHSU, MULHU
REM* B dynamic branch
False posifi N
*\Sonle false%%ﬁq\@ sociatio
* N |scla§§|[fgeﬁgg>gbo§fgﬁscﬂtﬂ,g‘|structlon /
RTL2MuPATH: SynthLC:
* 124,459 properties, ~4 min per property 30,774 properties, ~2 min per property
* ~16% undetermined * ~14% undetermined

Stanford University 33

Leakage Signatures Captures Various Kinds of Side-Channels: A New
Class of Speculative Interference Attack (SIA) [Behnia+, ASPLOS’21]

store itself youzger dynamic (in-flight) load

-~
3

ecret]

See paper for details: P
* Different in two ways from standard speculative interference attack 5

 MPATH variability yields a more general definition of speculative
interference attacks

#2 IlaIIOIUIILLy OUNAUUULU O, - d

Stanford University 34

In the paper...

* Formalisms
* Defining "stateless"/"stateful" channels and "active"/"passive" attacks using

transponders
* Replacement of 2-trace side-channel free property with many 1-trace properties and
symbolic information taint tracking
 RTL2MpPATH and SynthLC Implementation and Usage
* Required SystemVerilog design metadata
 SystemVerilog Assertions (SVAs) generation from templates

* Evaluation
* Side-channels discovered in CVA6 Core and Cache: store-to-load stalling, serial

divider/remainder, jump and branches, channels in cache involving various structures
* New functional bugs discovered with RTL2ZMuPATH for the CVA6 core

Stanford University 35

Takeaways

CT[e.g., Cauligi+, SecDev’17], SCT [Mosier+, SP’24], SpecShield [Barber+, PACT 19],
ConTExt [Schwarz+, NDSS’20], Dolma [Loughlin+, ISCA’21], OISA [Yu+, NDSS’19], MI6
[Bourgeat, MICRO’19], STT [Yu+, MICRO’19], SDO [Yu+, ISCA’20], SPT [Choudhary, MICRO’21]

\

PipeCheck [MICRO’14]
CCICheck [MICRO’15]
COATCheck [ASPLOS’16]
TriCheck [ASPLOS’17]

RTLCheck [MICRO’17]

PipeProof [MICRO’18]
CheckMate [MICRO’18]

SystemVerilog
Processor Design

Stanford University

|

fFormal Hardware Consistency\
Model and Security Verification
with the Check Tools

e e

Abstract Microarchitectural

Hardware Side-
Channel Defenses

—

Model: ySPEC Model

. J

Narrowed Verification Gap! ‘

\.

Leakage Signhatures that <
characterizes all hardware

side-channels

J

Instruction

AWl uPATHs Per

36

Stanford University

Thank you!

yaohsiao@stanford.edu
https://github.com/yaohsiaopid/SynthLC

Artifacts Evaluated - Reusable, Available

< @ [V]

37

	Default Section
	Slide 1: Automatically Uncovering Hardware Side-Channels in Processor RTL with Multi-μPATH Synthesis

	background
	Slide 2: Design Abstraction Helps Scale Formal Hardware Verification
	Slide 3: Axiomatic Microarchitectural Models Enable Formal Analysis
	Slide 4: Axiomatic Microarchitectural Models Enable Formal Analysis
	Slide 5: Verification Challenge: How to Verify that a μSPEC Accurately Represents a SystemVerilog Microarchitecture
	Slide 6: Roadmap
	Slide 7: Roadmap

	rtl2mupath
	Slide 8: Overview of RTL2MμPATH: Multi-μPATH Synthesis from RTL
	Slide 9: Overview of RTL2MμPATH: Multi-μPATH Synthesis from RTL
	Slide 10: Overview of RTL2MμPATH: Multi-μPATH Synthesis from RTL
	Slide 11: Overview of RTL2MμPATH: Multi-μPATH Synthesis from RTL
	Slide 12: Conceptualizing Nodes in a μPATH: A Key Challenge to Automated μPATH Discovery with RTL2MμPATH
	Slide 13: Conceptualizing Nodes in a μPATH: A Key Challenge to Automated μPATH Discovery with RTL2MμPATH
	Slide 14: Our Solution: Expressing Nodes in μPATHs using Micro-op Finite State Machines (μFSMs) from a Processor’s Control Path
	Slide 15: Our Solution: Expressing Nodes in μPATHs using Micro-op Finite State Machines (μFSMs)
	Slide 16: Our Solution: Expressing Nodes in μPATHs using Micro-op Finite State Machines (μFSMs)
	Slide 17: RTL2MμPATH: Synthesizing μPATHs from Processor Design
	Slide 18: RTL2MμPATH: Synthesizing μPATHs from Processor Design
	Slide 19: RTL2MμPATH: Synthesizing μPATHs from Processor Design
	Slide 20: RTL2MμPATH: Synthesizing μPATHs from Processor Design

	insight
	Slide 21: Roadmap
	Slide 22: Operand-Dependent μPATH Variability on a Microarchitecture Implies Existence of Hardware Side-Channels
	Slide 23: Operand-Dependent μPATH Variabilities on a Microarchitecture Imply Existence of Hardware Side-Channels
	Slide 24: Hardware Side-Channel Defenses for a Microarchitecture Minimally Requires Identifying Unsafe Instructions that Leak Their Operands
	Slide 25: Hardware Side-Channel Defenses in Hardware or Software Require Characterizing a Microarchitecture’s Side-Channels
	Slide 26: Roadmap

	synthlc
	Slide 27: SynthLC: Attributing μPATH Variability to Unsafe Instruction Operands and Synthesizing Formally-Verified Leakage Signatures
	Slide 28: SynthLC Synthesizes a Complete Set of Verified Leakage Signatures…
	Slide 29: SynthLC Synthesizes a Complete Set of Verified Leakage Signatures…
	Slide 30: SynthLC Synthesizes a Complete Set of Verified Leakage Signatures…
	Slide 31: Leakage Signatures: A Unifying Framework for Characterizing Hardware Side-Channels

	evaluation
	Slide 32
	Slide 33: CVA6 Core: Results
	Slide 34: Leakage Signatures Captures Various Kinds of Side-Channels: A New Class of Speculative Interference Attack (SIA) [Behnia+, ASPLOS’21]
	Slide 35: In the paper...
	Slide 36
	Slide 37

