
Automatically Uncovering Hardware Side-Channels
in Processor RTL with Multi-μPATH Synthesis

Yao Hsiao1, Nikos Nikoleris2, Artem Khyzha2, Dominic P. Mulligan3,
Gustavo Petri3, Christopher W. Fletcher4, Caroline Trippel1

1Stanford University, 2Arm, 3Amazon Web Service, 4University of California, Berkeley
Original Work is published in 2024 International Symposium on Microarchitecture (MICRO)

2025 OSCAR workshop

RTL (e.g., SystemVerilog)

Design Abstraction Helps Scale Formal Hardware Verification

Example: The Check Tools automate memory consistency model (MCM) and
security verification of processor microarchitectures.

2

PipeCheck [MICRO’14]
CCICheck [MICRO’15]

Architecture (ISA)

High-Level Language

Compiler OS

Abstract
Microarchitectural Model

COATCheck [ASPLOS’16]

TriCheck [ASPLOS’17]

RTLCheck [MICRO’17]

CheckMate [MICRO’18]

PipeProof [MICRO’18]

Omit details not relevant for the verification task

TriCheck [ASPLOS’17]

COATCheck [ASPLOS’16]

Architecture (ISA)

High-Level Language

Compiler OS

RTLCheck [MICRO’17]

PipeProof [MICRO’18]

CheckMate [MICRO’18]

PipeCheck [MICRO’14]
CCICheck [MICRO’15]

3

Formal Hardware Consistency
Model and Security Verification

with the Check Tools

Axiom Ld_exe_path:

forall microops i,
IsAnyRead i ⇒

AddEdges [((i, IF), (i, DX));

((i, DX), (i, RdMm));
((i, RdMm), (i, L1$));

((i, L1$), (i, WB));] \/

AddEdges [((i, IF), (i, DX));
((i, DX), (i, WB));]

// Other axioms...

First order logic axiomatic model of a
microarchitecture:
• Omits combinational logic details
• Retains microarchitectural events

and their orderings

Axiomatic Microarchitectural Models Enable Formal Analysis

RTL (e.g., SystemVerilog)

Abstract Microarchitectural
Model: μSPEC Model

[Lustig+, ASPLOS’16]

Microarchitectural
Execution Path (μPATH)
Axioms Per-Instruction

Set of state
elements

4

Formal Hardware Consistency
Model and Security Verification

with the Check Tools

Axiomatic Microarchitectural Models Enable Formal Analysis

RTL (e.g., SystemVerilog)

Abstract Microarchitectural
Model: μSPEC Model

IF

DX

WB

RdMm

L1$

LD LD

Example
LD μPATH

L1$

mem

IF DX WB

Dynamic
instructionNode: A specific instruction

(column) updating a specific
set of state elements (row).

Edge: Happens-before
relationship between nodes.

Cache miss
μPATH

Cache hit
μPATH

All LD μPATHs:

3-stage processor

Axiom Ld_exe_path:

forall microops i,
IsAnyRead i ⇒

AddEdges [((i, IF), (i, DX));

((i, DX), (i, RdMm));
((i, RdMm), (i, L1$));

((i, L1$), (i, WB));] \/

AddEdges [((i, IF), (i, DX));
((i, DX), (i, WB));]

// Other axioms...

Microarchitectural
Execution Path (μPATH)
Axioms Per-Instruction

μPATH: Models a specific
execution of a specific
dynamic instruction on a
specific microarchitecture
as a directed “happens-before”
graph [Lustig+, MICRO’14].

Axiom Ld_exe_path:
forall microops i,
IsAnyRead i ⇒
miss_upath OR hit_upath.

Axiom Ld_exe_path:

forall microops i,
IsAnyRead i ⇒

AddEdges [((i, IF), (i, DX));

((i, DX), (i, RdMm));
((i, RdMm), (i, L1$));

((i, L1$), (i, WB));] \/

AddEdges [((i, IF), (i, DX));
((i, DX), (i, WB));]

// Other axioms...

RTL (e.g., SystemVerilog)

Manual Translation....
μSPEC-RTL

Verification Gap

5

Verification Challenge: How to Verify that a μSPEC Accurately
Represents a SystemVerilog Microarchitecture

Abstract Microarchitectural
Model: μSPEC Model

Formal Hardware Consistency
Model and Security Verification

with the Check Tools
always @(posedge clk) begin

 if (!rst_n) begin
 ...

 end else if (if_vld) begin

 end
 id_op <= if_op;

 id_ex_vld <= if_ex_vld;

 ...

μSPEC looks quite different
from SystemVerilog!

Handwritten

Problem: Does μSPEC
accurately represent the RTL?

Designer Inspection

Roadmap

• Background: The Microarchitecture-μSPEC Model Verification Challenge

• RTL2MμPATH: Synthesizing (“Uncovering”) All μPATHs per Instruction from
Advanced SystemVerilog Processors

• Key Insight: μPATH Variability (>1 μPATH) is a Strong Indicator of a
Hardware Side-Channel

• SynthLC: Synthesizing Formally Verified “Leakage Signatures”
from SystemVerilog Processors

6

Synthesizes all μPATH axioms required to
define a formally verified μspec model (i.e.,
~50% of μspec model) .

Application of μPATH synthesis for uncovering all hardware side-channels!

Roadmap

• Background: The Microarchitecture-μSPEC Model Verification Challenge

• RTL2MμPATH: Synthesizing (“Uncovering”) All μPATHs per Instruction from
Advanced SystemVerilog Processors

• Key Insight: μPATH Variability (>1 μPATH) is a Strong Indicator of a
Hardware Side-Channel

• SynthLC: Synthesizing Formally Verified “Leakage Signatures”
from SystemVerilog Processors

7

8

RTL2MμPATH

SystemVerilog
Processor Design

Overview of RTL2MμPATH: Multi-μPATH Synthesis from RTL

Instruction Encodings

Design Metadata

9

Zero-Skip Optimization

Multiplication Unit (mulU)

RTL2MμPATH

SystemVerilog
Processor Design

Overview of RTL2MμPATH: Multi-μPATH Synthesis from RTL

L1$

mem

IF DX WB

ALU
LSU

....

op1

Instruction Encodings

Design Metadata

MUL_mulU(MULN i0):
 if (i0.op0 == 0 ||
 i0.op1 == 0):
 return fast_path # 1 cyc
return slow_path # 3 cyc

the active instruction
visits mulU by putting its PC value the
mulU’s PC Register (PCR)MUL’s own (N) operands

acc

ctrl

pc_i PCR

op0 == 0?
...

0x420x42 MUL

op0
op1

10

Zero-Skip Optimization

Multiplication Unit (mulU)

RTL2MμPATH

SystemVerilog
Processor Design

Overview of RTL2MμPATH: Multi-μPATH Synthesis from RTL

L1$

mem

IF DX WB

ALU
LSU

....

op1

Instruction Encodings

Design Metadata

MUL_mulU(MULN i0):
 if (i0.op0 == 0 ||
 i0.op1 == 0):
 return fast_path # 1 cyc
return slow_path # 3 cyc

acc

ctrl

pc_i PCR

op0 == 0?
...

Netlist Analysis

SystemVerilog Assertion (SVA)
Generation from Templates

Model Checking

assert (property)

prove assert (property)
Te

ch
ni

qu
es

11

Zero-Skip Optimization

Multiplication Unit (mulU)

RTL2MμPATH

SystemVerilog
Processor Design

Overview of RTL2MμPATH: Multi-μPATH Synthesis from RTL

L1$

mem

IF DX WB

ALU
LSU

....

op1

Instruction Encodings

Design Metadata

MUL_mulU(MULN i0):
 if (i0.op0 == 0 ||
 i0.op1 == 0):
 return fast_path # 1 cyc
return slow_path # 3 cyc

acc

ctrl

pc_i PCR

op0 == 0?
... All MUL μPATHs

IF

ID

acc(1)

acc(2)

acc(3)

WB

MUL
IF

ID

acc(1)

acc(2)

acc(3)

WB

MUL

...
cyc 1

cyc 2

cyc 3

cyc 1

All ADD μPATHs
...

Complete set of μPATHs
for each instruction

Cycle-accurate
μPATHs (new!):
• Nodes: State

updates in a cycle
• Edges: 1-cycle

happens-before

acc(1)

acc(3)

WB

IF

ID

acc(2)

MUL

acc(1)

acc(3)

WB

IF

ID

acc(2)

MUL

12

Conceptualizing Nodes in a μPATH: A Key Challenge to Automated
μPATH Discovery with RTL2MμPATH

All reachable
MUL μPATHs

Asks a model checker
whether μPATH is reachable
by MUL in any execution.

...

Multiplication Unit (mulU)

L1$

mem

IF DX WB

ALU
LSU

....

op1

acc

ctrl

pc_i PCR

op0 == 0?
...

RTL2MμPATH
SystemVerilog

Processor Design

Instruction Encodings

Design Metadata

cover (MUL exhibit μPATH)

Discard unreachable MUL μPATHs

acc(1)

acc(3)

WB

IF

ID

acc(2)

MUL

acc(1)

acc(3)

WB

IF

ID

acc(2)

MUL

13

Conceptualizing Nodes in a μPATH: A Key Challenge to Automated
μPATH Discovery with RTL2MμPATH

All reachable
MUL μPATHs

...

Multiplication Unit (mulU)

L1$

mem

IF DX WB

ALU
LSU

....

op1

acc

ctrl

pc_i PCR

op0 == 0?
...

RTL2MμPATH
SystemVerilog

Processor Design

Instruction Encodings

Design Metadata Discard unreachable MUL μPATHs

RISC-V CVA6 Core [Zaruba+, VLSI’19]

How to recognize a
node? Requires detecting
& attributing state update
to specific instructions

Many instructions
(colors) in-flight at
the same time!

Asks a model checker
whether μPATH is reachable
by MUL in any execution.

cover (MUL exhibit μPATH)

14

Our Solution: Expressing Nodes in μPATHs using Micro-op Finite
State Machines (μFSMs) from a Processor’s Control Path

L1$

mem

IF DX WB

SystemVerilog
Processor Design

Multiplication Unit (mulU)

ALU
LSU

....

op1

acc

ctrl

pc_i PCR

op0 == 0?
...

Micro-op Finite State Machine (μFSM):
• <IIR, stateVars> tuple
• Orchestrate instruction execution from

fetch until possibly after commit
• Control instruction state updates per-cycle

ctrl

PCR

0x420x42 MUL

Instruction-identifying register (IIR),
e.g., register holding PC value.

stateVarsIIR

An instruction occupies/ visits a
μFSM by putting a unique identifier
(e.g., its PC) in the μFSM’s IIR.

State variables,
encoding a concrete
FSM state

L1$

mem

IF DX WB

SystemVerilog
Processor Design

sMUL

15

Our Solution: Expressing Nodes in μPATHs using Micro-op Finite
State Machines (μFSMs)

Multiplication Unit (mulU)

ALU
LSU

....

op1

acc

ctrl

pc_i PCR

op0 == 0?
...

sIDLE

sMUL

sFIN
Updates: acc, ... Updates: acc, ..

Updates: N/A

acc(1)

IF

ID

MUL

...

sMUL(1)

IF

ID

MUL

Micro-op Finite State Machine (μFSM):
• <IIR, stateVars> tuple
• Orchestrate instruction execution from

fetch until possibly after commit
• Control instruction state updates per-cycle

MUL updates acc
when ctrl == sMUL

sMUL

PCR == 0x42 &&
ctrl == sMUL

ctrl

PCR
0x42

stateVarsIIR

Micro-op Finite State Machine (μFSM):
• <IIR, stateVars> tuple
• Orchestrate instruction execution from

fetch until possibly after commit
• Control instruction state updates per-cycle

L1$

mem

IF DX WB

SystemVerilog
Processor Design

sMUL

16

Our Solution: Expressing Nodes in μPATHs using Micro-op Finite
State Machines (μFSMs)

Multiplication Unit (mulU)

ALU
LSU

....

op1

acc

ctrl

pc_i PCR

op0 == 0?
...

sIDLE

sMUL

sFIN
Updates: acc, ... Updates: acc, ..

Updates: N/A

acc(1)

IF

ID

MUL

...

sMUL(1)

IF

ID

MUL

sMUL

PCR == 0x42 &&
ctrl == sMUL

Performing location
(PL): Concrete non-
idle state of a μFSM

MUL updates acc
when ctrl == sMUL

ctrl

PCR
0x42

stateVarsIIR

17

RTL2MμPATH: Synthesizing μPATHs from Processor Design

Multiplication Unit (mulU)

ALU
LSU

....

ctrl

PCR

L1$
mem

IF DX WB

sIDLE

sMUL

sFIN

RTL2MμPATH

SystemVerilog
Processor Design

Instruction Encodings

Design Metadata
(including μFSMs)

18

RTL2MμPATH: Synthesizing μPATHs from Processor Design

Multiplication Unit (mulU)

ALU
LSU

....

ctrl

PCR

L1$
mem

IF DX WB

sIDLE

sMUL

sFIN

Step 1: Synthesizing sets of nodes
that can form reachable μPATHs RTL2MμPATH

SystemVerilog
Processor Design

Instruction Encodings

Design Metadata
(including μFSMs)

19

RTL2MμPATH: Synthesizing μPATHs from Processor Design

Multiplication Unit (mulU)

ALU
LSU

....

ctrl

PCR

L1$
mem

IF DX WB

sIDLE

sMUL

sFIN

Step 1A: Enumerate all possible
PLs (concrete μFSM states)

with netlist analysis

n PLs

Worst case: 2n sets (n > 40)

Can <inst> visit <PL>?

Step 1B: SVA property-driven
μPATH pruning

Can any instruction
visit <PL>?

Can <inst> visit <PL1>
without visiting <PL2>?

Can <inst> visit both
<PL1> and <PL2>?

IF

sMUL

sFIN

WB

MUL MUL MUL

...

MUL

...

Step 1: Synthesizing sets of nodes
that can form reachable μPATHs

SystemVerilog
Processor Design

Instruction Encodings

Design Metadata
(including μFSMs)

Ask a model checker…

20

RTL2MμPATH: Synthesizing μPATHs from Processor Design

Multiplication Unit (mulU)

ALU
LSU

....

ctrl

PCR

L1$
mem

IF DX WB

sIDLE

sMUL

sFIN

Step 1A: Enumerate all
possible PLs (concrete

μFSM states) with
netlist analysis

n PLs

Step 1B: SVA
property-driven
μPATH pruning

IF

sMUL

sFIN

WB

Step 1: Synthesizing sets of nodes
that can form reachable μPATHs

SystemVerilog
Processor Design

Instruction Encodings

Design Metadata
(including μFSMs)

...
MUL

IF

sMUL

sFIN

WB

MUL
IF

sMUL

sFIN

WB

MUL

Candidate
sets of nodes
(10s to ~1k)

...

Step 1C: Embed node
sets as SVA properties
to deduce reachability

Can <MUL> visit <IF,
sMUL, WB> but no
others (e.g., sFIN)?

Ask a model checker…Step 2: Synthesizing full μPATHs by
adding edges to reachable node sets

Details in
the paper!

Roadmap

• Background: The Microarchitecture-μSPEC Model Verification Challenge

• RTL2MμPATH: Synthesizing (“Uncovering”) All μPATHs per Instruction from
Advanced SystemVerilog Processors

• Key Insight: μPATH Variability (>1 μPATH) is a Strong Indicator of a
Hardware Side-Channel

• SynthLC: Synthesizing Formally Verified “Leakage Signatures”
from SystemVerilog Processors

21

sMUL(1)

sFIN

WB

IF

ID

sMUL(2)

MUL
IF

ID

sMUL(1)

sMUL(2)

sFIN

WB

MUL

slow μPATH

fast μPATH

MUL secret op1

Example on toy processor:

22

Operand-Dependent μPATH Variability on a Microarchitecture
Implies Existence of Hardware Side-Channels

unsafe_instruction secret

A typical pattern of victim program
in a classic side-channel attack:

MUL_mulU(MULN i0):
 if (i0.op0 == 0 || i0.op1 == 0):
 return fast_path # 1 cycle
return slow_path # 3 cycle

An instruction that creates and exhibits
operand-dependent μPATH variability
(>1 μPATH) can leak its operand(s) via a
hardware side-channel!

Infer MUL’s secret
based on which μPATH
MUL exhibits at runtime!

23

Operand-Dependent μPATH Variabilities on a Microarchitecture
Imply Existence of Hardware Side-Channels

STB

issue

ldStall

ldFin

ST

Load stalls when there is an
address offset match with in-
flight stores in store buffer.

ST [secret]
LD [public]

Example on RISC-V CVA6 Core:

CVA6 [Zaruba+, VLSI’19]

non-stall μPATH stall μPATH

ST LD

...

...

LD
secret != public secret == public

STB

issue

ldStall

ldFin

Infer ST’s secret
based on which μPATH
LD exhibits at runtime!

unsafe_instruction secret
unsafe_instruction public

A more subtle pattern of victim
program in a side-channel attack:

Beyond unsafe_instruction, STT [Yu+,
MICRO’19], a side-channel defense,
requires distinguishing the two kinds of
side-channels to improve performance!

MUL

unsafe_instruction secret
unsafe_instruction public

24

Hardware Side-Channel Defenses for a Microarchitecture Minimally
Requires Identifying Unsafe Instructions that Leak Their Operands

unsafe_instruction secret

A typical pattern of victim program in a
classic side-channel attack:

A more subtle pattern of victim program in
a side-channel attack:

Creates operand-dependent
hardware resource usage, which
manifests as operand-dependent
μpath variability for itself () or
some other instruction (→)

sMUL(1)

sFIN
WB

IF

ID

sMUL(2)

MUL

slow
μPATH

fast
μPATH

STB

issue

ldStall

ldFin

non-stall
μPATH

stall
μPATH

...

LDST LD

...

Implicit channelExplicit channel

25

Defenses Microarchitectural Components
CT [e.g., Cauligi+, SecDev’17], SCT [Mosier+, SP’24],
SpecShield [Barber+, PACT’19], ConTExt [Schwarz+, NDSS’20]

MI6 [Bourgeat+, MICRO’19]
Contention-based dynamic channels
Static channels

OISA [Yu+, NDSS’19] Input-dependent arithmetic units

STT [Yu+, MICRO’19]
SDO [Yu+, ISCA’20]
SPT [Choudhary, MICRO’21]

Implicit branches
Prediction-based channels
Resolution-based channels

SDO [Yu+, ISCA’20] Data-oblivious variants

Dolma [Loughlin+, ISCA’21]

Variable-time micro-ops
Contention-based dynamic channels
Inducive micro-ops
Resolvent micro-ops
Prediction resolution points
Persistent state modifying micro-ops

unsafe_instruction secret

Hardware Side-Channel Defenses in Hardware or Software Require
Characterizing a Microarchitecture’s Side-Channels

Implicit channel
Explicit channel

#1

#2
#3

#4

#5

#6

Designer
Inspection!

RTL
Processor

Design

Roadmap

• Background: The Microarchitecture-μSPEC Model Verification Challenge

• RTL2MμPATH: Synthesizing (“Uncovering”) All μPATHs per Instruction from
Advanced SystemVerilog Processors

• Key Insight: μPATH Variability (>1 μPATH) is a Strong Indicator of a
Hardware Side-Channel

• SynthLC: Synthesizing Formally Verified “Leakage Signatures”
from SystemVerilog Processors

26

Foundational to the
design of hardware
side-channel defenses

27

SynthLC: Attributing μPATH Variability to Unsafe Instruction Operands
and Synthesizing Formally-Verified Leakage Signatures

All μPATHs Per
Instruction

RTL2MμPATH

SystemVerilog
Processor Design

Instruction Encodings

Design Metadata

all operand-dependent μPATH
variability = side-channel

SynthLC

sMUL(1)

sFIN

WB

IF

ID

sMUL(2)

MUL MUL

slow μPATH fast μPATH

!:(MUL,op0), (MUL, op1)
X:(SUB, op0), ...

Ask a model checker if every
candidate (T, op) pair contributes to
the divergence using symbolic
information flow analysis

Automatically attribute
μPATH variability to
instruction operands under
various microarchitectural
conditions

unsafe_instruction secret

Defense #1

Details
in the

paper!

28

SystemVerilog
Processor Design

SynthLC

LD_issue(STD i0):

sMUL(1)

sFIN

WB

IF

ID

sMUL(2)

MUL MUL

slow μPATH fast μPATH

Leakage Signature:
Characterizes a specific
instance of unsafe-
instruction-operand-
dependent μPATH
variability for a specific
instruction, i.e., a side-
channel.

MUL_mulU(MULN i0):
 if (i0.op0 == 0 ||
 i0.op1 == 0):
 return {WB}
return {sMUL}

instruction exhibiting
μPATH variability

unsafe instructions

unsafe operands
O

SynthLC Synthesizes a Complete Set of Verified Leakage Signatures…

sMUL(1)

sFIN

WB

IF

ID

sMUL(2)

MUL MUL

29

SystemVerilog
Processor Design

SynthLC

…
 LD_issue(STD i0):

fast μPATH slow μPATH

Leakage Signature:
Characterizes a specific
instance of unsafe-
instruction-operand-
dependent μPATH
variability for a specific
instruction, i.e., a side-
channel.

MUL_mulU(MULN i0):
 if (i0.op0 == 0 ||
 i0.op1 == 0):
 return {WB}
return {sMUL}

instruction exhibiting
μPATH variability

unsafe instructions

unsafe operands
O

SynthLC Synthesizes a Complete Set of Verified Leakage Signatures…

TN Intrinsic (same)

TD Dynamic (older)

TD Dynamic (younger)

TS Static (older)

O

Y

Runtime conditions for
unsafe instruction to create
μPATH variability

Details in the paper!

30

SystemVerilog
Processor Design

SynthLC

…
 LD_issue(STD i0):

sMUL(1)

sFIN

WB

IF

ID

sMUL(2)

MUL MUL

slow μPATH fast μPATH

Leakage Signature:
Characterizes a specific
instance of unsafe-
instruction-operand-
dependent μPATH
variability for a specific
instruction, i.e., a side-
channel.

MUL_mulU(MULN i0):
 if (i0.op0 == 0 ||
 i0.op1 == 0):
 return {WB}
return {sMUL}

instruction exhibiting
μPATH variability

source of μPATH divergence unsafe instructions

unsafe operands

μPATH divergence
destination

O

SynthLC Synthesizes a Complete Set of Verified Leakage Signatures…

unsafe instructions

Leakage Signatures: A Unifying Framework for Characterizing
Hardware Side-Channels

Defenses Microarchitectural Components μPATHs
Leakage Signature Components

P src TN TD TS args
CT [e.g., Cauligi+, SecDev’17], SCT
[Mosier+, SP’24], SpecShield [Barber+,
PACT’19], ConTExt [Schwarz+, NDSS’20]

unsafe_instruction secret - - -

MI6 [Bourgeat, MICRO’19]
Contention-based dynamic channels - - -
Static channels - - - -

OISA [Yu+, NDSS’19] Input-dependent arithmetic units - - - -

STT [Yu+, MICRO’19]
SDO [Yu+, ISCA’20]
SPT [Choudhary, MICRO’21]

Explicit channels - - -
Implicit channels - -
Implicit branches - - -
Prediction-based channels - - -
Resolution-based channels - - -

SDO [Yu+, ISCA’20] Data-oblivious variants - - - -

Dolma [Loughlin+, ISCA’21]

Variable-time micro-ops - - - - -
Contention-based dynamic channels - -
Inducive micro-ops - - - -
Resolvent micro-ops - - - - -
Prediction resolution points - - -
Persistent state modifying micro-ops - - - - -

31

instruction exhibiting μPATH variability

source of μPATH
divergence unsafe operands

#1

#2
#3

#4

#5

#6

▪ Open-source RISC-V CVA6 processor

▪ 64-bit, 6-stage, single-issue core

▪ Speculation and limited out-of-order
write-back with diverse functional units
(ALU, LSU, Mul/Div, CSR buffer)

▪ Write-through set-associative cache

▪ 72 instructions in RV64I base ISA + M
extension (RV64IM)

▪ Synthesize leakage signatures separately
(~modularity) from Core and Data Cache

respectively

32

CVA6 Core and Cache Case Study

CVA6 Core [Zaruba+, VLSI’19]

First formal side-channel
analysis of a realistic

processor cache!

72 instruction with unsafe μPATH variability

Fig. 6: SYNTHLC CVA6 synthesis results. Transponders (coarse-grained col.) and their leakage signatures with output range sizes (fine-
grained col.), plus explicit inputs from intrinsic/dynamic transmitters in N/D-labeled rows, where the top (bottom) sub-row is rs1 (rs2). We
distinguish secondary leakage and false-positive from primary leakages (§VII).

1) Transponders and Transmitters: CVA6 Core: Figure. 6
summarizes SYNTHLC’s synthesis results for the CVA6 Core.
Coarse-grained row and column labels, respectively, denote
transmitters and transponders. Fine-grained row and column
labels, respectively, denote transmitter labels (intrinsic/dy-
namic) and ranges for distinct leakage signatures. The top
(bottom) sub-row for each fine-grained row indicates trans-
mitter operand rs1 (rs2).

SYNTHLC finds transponders and leakage signatures as de-
scribed in §V. We observe that (i) classes of transponders fea-
ture identical leakage signatures, and (ii) classes of transmitters
are explicit inputs to the same leakage signatures where they
feature identical labels. So, Fig. 6 groups transponders and
transmitters accordingly. Each fine-grained column represents
a leakage signature P_src, where P can be any transponder
in the class represented by the coarse-grained column label.
Colored cells within a column indicate P_src’s explicit inputs
having intrinsic/dynamic transmitters on N/D crossing rows.

As an example, consider the leftmost fine-grained col-
umn, outlined in red. It correspond to a leakage signature
ADD_ID that SYNTHLC synthesizes for ADD transponders on
the (original) CVA6 CPU. ADD_ID may output one of three
decisions for ADDs with respect to decision source ID. The
top-most (bottom-most) colored cell in the column indicates
that operand rs1 of a dynamic branch (store) is an explicit
input to ADD_ID. Overall, this column indicates that an ADD

exhibits µPATH variability of degree three at ID as a function
of dynamic branch/divisions/remainders operands (both rs1

and rs2), load/store operands (rs1, the base address), and
JALR’s operands (rs1, the target address).

We also classify cells in Fig. 6 as representing primary (non-
gray, excluding yellow cells, which denote false positives –
§VII-B1) versus secondary (gray) leakage. Primary/secondary
leakage indicates that the transponder (column) can/cannot
leak the transmitter’s (row) unsafe operand without the pres-
ence of other transponders. Examples of primary leakage
include, in STT’s terms, explicit channels implicit channels,
and explicit branchs. Secondary leakage often arises due to
shared resources, such asan ADD behind an intrinsic transmitter
(e.g., DIV) that is stalled from committing at scoreboard.

SYNTHLC flags all 72 evaluated instructions as transpon-
ders and finds that the CVA6 core features intrinsic and
dynamic transmitters exclusively (hence the omission of static
transmitter labels in Fig. 6). Nineteen intrinsic transmitters
are found: eight division (DIV) and remainder (REM) variants,
seven load (LD) variants, and four store (ST) variants. Twenty-
six dynamic transmitters are found: all intrinsic transmitters

plus six branch variants and JALR. Notably, all intrinsic trans-
mitters except stores can exhibit execution time variability as
a function of their operands. The paragraphs below summarize
key findings, organized around classes of transponders.

Load: On CVA6, a LD transponder may exhibit sev-
eral decisions at issue, including proceeding to destinations
{ldFin} /{LSQ,ldStall} as described in §IV-A as a function
of rs1 of theLD itself (LDN) and rs1 of a dynamic store (STD).

Store: A ST transponder exhibits µPATH variability fol-
lowing a PL in the committed STB (comSTB), where it stalls if
a younger in-flight load with a different addresses is ready to
access the single-R/W port memory; CVA6 prioritizes serving
the younger load. The leakage signature (ST_comSTB in Fig. 3)
output depends on rs1 of the ST itself (STN) and rs1 of a
dynamic load (LDD). We are the first to uncover this channel
when conducting CV6 leakage contract verification [27], [28].

Division/Remainder: SYNTHLC flags all DIV/REM vari-
ants as intrinsic transmitters, and thus, transponders. Both
use serial division circuitry, taking one to sixty-six cycles to
compute their results.

All: All transponders (i.e., all instructions) can be stalled
in ID (from issuing) or scbFin (from committing) as a
function of the operand(s) of dynamic LD, ST, DIV, and/or
REM transmitters. They may also be flushed at any PL as a
function of dynamic branch or JALR transmitter operands: all
six branches and JALR are flagged as dynamic transmitters.
Branches, as a function their rs1 and rs2 operands, and JALR,
as function of itsrs1 operand, flush a transponder upon a mis-
prediction or a misaligned branch target. Prior work classifies
branch and JALR operands as unsafe on CVA6, but cannot
deduce why [28].

2) Transponders and Transmitters: CVA6 Cache: We are
the first to deploy a leakage contract verification procedure on
a realistic processor cache [27], [28], [79], [80], [86]. LEAVE

(§VIII) considers a single-line cache [86]. In particular, we
direct SYNTHLC to uncover three leakage signatures (based
on three distinct decision sources) each for LD and ST within
the CVA6 data cache. We stop at three leakage signatures for
LD and ST, because all three are identical for each instruction.
Collectively, both unique signatures (one for LD, one for ST)
implicate both LD and ST as intrinsic, dynamic, and static
transmitters, due to their interactions with cache tag banks,
a coalescing write buffer, and more.

Fig. 2 shows some µPATHs for stores. A ST visiting wBVd,
where it accesses the cache, may exhibit several decisions,
including progressing to destinations {wRTg,wr$0} /{wRTg} in
the left/right µPATH upon a cache miss/hit. The synthesized

10

CVA6 Core: Results

33

26
 u

ns
af

e
in

st
ru

ct
io

n

RTL2MμPATH:
• 124,459 properties, ~4 min per property
• ~16% undetermined

SynthLC:
• 30,774 properties, ~2 min per property
• ~14% undetermined

μPATH variability depends
on both operands of
dynamic branch

A leakage signature

Colored cell: An instruction
(column) exhibits μpath
variability as a function of
unsafe instruction (row)’s
operands

False positive:
• Some false-positive association
• No misclassification of unsafe instruction

YST_comSTB(STN i0, LDD i1):
 if (i1.visit(issue) &&
 offset(i0.addr) == offset(i1.addr)):
 return {memReq, comSTB}
return {comSTB}

34

Leakage Signatures Captures Various Kinds of Side-Channels: A New
Class of Speculative Interference Attack (SIA) [Behnia+, ASPLOS’21]

issue

comSTB(1)

comSTB(2)

memReq

...

ST

ST [x]
...
CSR [inv_addr] # cause exception
LD [secret]

#2 Transiently executes...

LD [secret]

......

#1 commits

younger dynamic (in-flight) load

unsafe args

store itself

IF

Fetch before

See paper for details:
• Different in two ways from standard speculative interference attack
• μPATH variability yields a more general definition of speculative

interference attacks

35

• Formalisms
• Defining "stateless"/"stateful" channels and "active"/"passive" attacks using

transponders
• Replacement of 2-trace side-channel free property with many 1-trace properties and

symbolic information taint tracking
• RTL2MμPATH and SynthLC Implementation and Usage

• Required SystemVerilog design metadata
• SystemVerilog Assertions (SVAs) generation from templates

• Evaluation
• Side-channels discovered in CVA6 Core and Cache: store-to-load stalling, serial

divider/remainder, jump and branches, channels in cache involving various structures
• New functional bugs discovered with RTL2MμPATH for the CVA6 core

In the paper...

Takeaways

36

SystemVerilog
Processor Design

All μPATHs Per
Instruction

RTL2MμPATH

Leakage Signatures that
characterizes all hardware

side-channels

Hardware Side-
Channel Defenses

CT [e.g., Cauligi+, SecDev’17], SCT [Mosier+, SP’24], SpecShield [Barber+, PACT’19],
ConTExt [Schwarz+, NDSS’20], Dolma [Loughlin+, ISCA’21], OISA [Yu+, NDSS’19], MI6
[Bourgeat, MICRO’19], STT [Yu+, MICRO’19], SDO [Yu+, ISCA’20], SPT [Choudhary, MICRO’21]

Abstract Microarchitectural
Model: μSPEC Model

Formal Hardware Consistency
Model and Security Verification

with the Check Tools

PipeCheck [MICRO’14]
CCICheck [MICRO’15]
COATCheck [ASPLOS’16]
TriCheck [ASPLOS’17]
RTLCheck [MICRO’17]

CheckMate [MICRO’18]
PipeProof [MICRO’18]

Narrowed Verification Gap!

SynthLC

Thank you!
yaohsiao@stanford.edu

https://github.com/yaohsiaopid/SynthLC

37

Artifacts Evaluated - Reusable, Available

	Default Section
	Slide 1: Automatically Uncovering Hardware Side-Channels in Processor RTL with Multi-μPATH Synthesis

	background
	Slide 2: Design Abstraction Helps Scale Formal Hardware Verification
	Slide 3: Axiomatic Microarchitectural Models Enable Formal Analysis
	Slide 4: Axiomatic Microarchitectural Models Enable Formal Analysis
	Slide 5: Verification Challenge: How to Verify that a μSPEC Accurately Represents a SystemVerilog Microarchitecture
	Slide 6: Roadmap
	Slide 7: Roadmap

	rtl2mupath
	Slide 8: Overview of RTL2MμPATH: Multi-μPATH Synthesis from RTL
	Slide 9: Overview of RTL2MμPATH: Multi-μPATH Synthesis from RTL
	Slide 10: Overview of RTL2MμPATH: Multi-μPATH Synthesis from RTL
	Slide 11: Overview of RTL2MμPATH: Multi-μPATH Synthesis from RTL
	Slide 12: Conceptualizing Nodes in a μPATH: A Key Challenge to Automated μPATH Discovery with RTL2MμPATH
	Slide 13: Conceptualizing Nodes in a μPATH: A Key Challenge to Automated μPATH Discovery with RTL2MμPATH
	Slide 14: Our Solution: Expressing Nodes in μPATHs using Micro-op Finite State Machines (μFSMs) from a Processor’s Control Path
	Slide 15: Our Solution: Expressing Nodes in μPATHs using Micro-op Finite State Machines (μFSMs)
	Slide 16: Our Solution: Expressing Nodes in μPATHs using Micro-op Finite State Machines (μFSMs)
	Slide 17: RTL2MμPATH: Synthesizing μPATHs from Processor Design
	Slide 18: RTL2MμPATH: Synthesizing μPATHs from Processor Design
	Slide 19: RTL2MμPATH: Synthesizing μPATHs from Processor Design
	Slide 20: RTL2MμPATH: Synthesizing μPATHs from Processor Design

	insight
	Slide 21: Roadmap
	Slide 22: Operand-Dependent μPATH Variability on a Microarchitecture Implies Existence of Hardware Side-Channels
	Slide 23: Operand-Dependent μPATH Variabilities on a Microarchitecture Imply Existence of Hardware Side-Channels
	Slide 24: Hardware Side-Channel Defenses for a Microarchitecture Minimally Requires Identifying Unsafe Instructions that Leak Their Operands
	Slide 25: Hardware Side-Channel Defenses in Hardware or Software Require Characterizing a Microarchitecture’s Side-Channels
	Slide 26: Roadmap

	synthlc
	Slide 27: SynthLC: Attributing μPATH Variability to Unsafe Instruction Operands and Synthesizing Formally-Verified Leakage Signatures
	Slide 28: SynthLC Synthesizes a Complete Set of Verified Leakage Signatures…
	Slide 29: SynthLC Synthesizes a Complete Set of Verified Leakage Signatures…
	Slide 30: SynthLC Synthesizes a Complete Set of Verified Leakage Signatures…
	Slide 31: Leakage Signatures: A Unifying Framework for Characterizing Hardware Side-Channels

	evaluation
	Slide 32
	Slide 33: CVA6 Core: Results
	Slide 34: Leakage Signatures Captures Various Kinds of Side-Channels: A New Class of Speculative Interference Attack (SIA) [Behnia+, ASPLOS’21]
	Slide 35: In the paper...
	Slide 36
	Slide 37

