Open-Source Computer Architecture Research (OSCAR) 2025-06-21 Tokyo, Japan

# Speculative Store Bypass Vulnerability in a Memory Dependence Predictor-Equipped RISC-V Processor

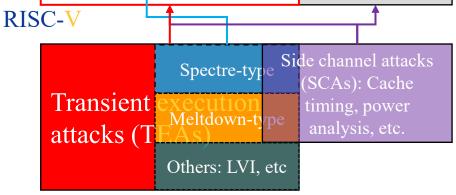
Tuo Chen<sup>1</sup>, Reoma Matsuo<sup>2</sup>, Ryota Shioya<sup>2</sup>, and Kuniyasu Suzaki<sup>1</sup>

<sup>1</sup> Institute of Information Security mgs234502@iisec.ac.jp, suzaki@iisec.ac.jp

<sup>2</sup> Department of Creative Informatics, Graduate School of Information Science and Technology, The University of Tokyo

matsuo@rsg.ci.i.u-tokyo.ac.jp, shioya@ci.i.u-tokyo.ac.jp

# Contents


- Overview
- Open-Source RISC-V processor RSD
- Speculative Store Bypass (SSB) vulnerability
- Attack verification
- Hardware mitigation
- Conclusion

## Overview

- <u>Transient execution vulnerabilities (TEVs) identified in CPUs</u>
- Growing attention on situation of RISC-V implementations
- Existing gap
  - Current TEV research is heavily
     concentrated on BOOM. Transient
     execution attacks against RISC-V
     implementations under more
     aggressive prediction strategies
     remain unexamined.

# Processors of various ISAs (including RISC-V) Out-of-order CPU In-order CPU Speculative execution Speculative prefetching Memory Branch prediction: PHT, BTB, RSB, etc Some in Nore in In-order CPU

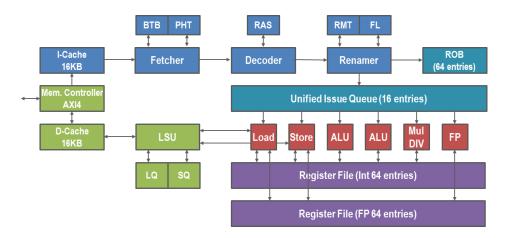
INSTITUTE of INFORMATION SECURITY



Microarchitectural attacks on CPUs

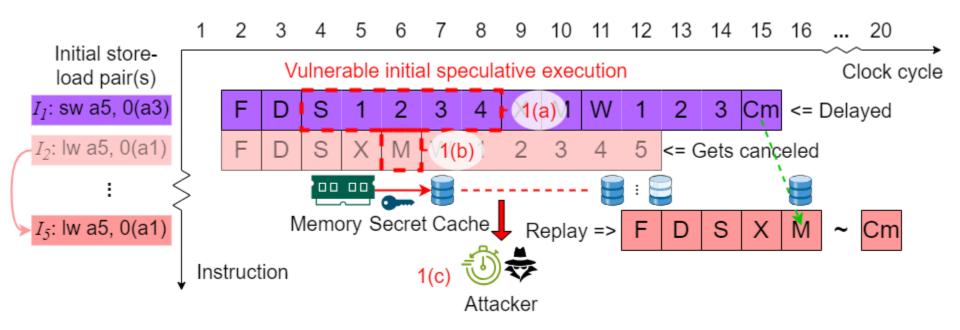
### 3

# Overview (cont'd)



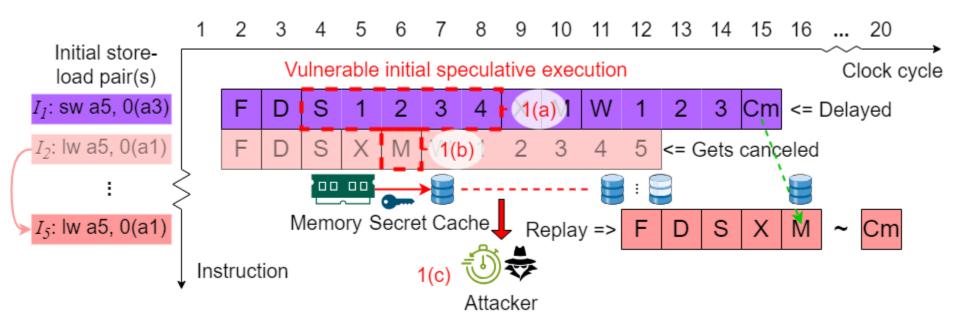

- Research objectives
  - Explore the feasibility of the Spectre-type SSB attack against a memory dependence predictor
     (MDP)-equipped RISC-V CPU, "RSD".
  - Confirm the results using "Konata", a pipeline visualization tool.
  - Investigate mitigations if the SSB is verified.

| CVE-                   | Name (Alias)      | Transient execution attacks => <b>RISC-V</b> CPU                                                                                                                           |  |  |  |  |  |
|------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 2017-<br>5753          | BCB (v1)          | Gonzalez et al., UCB report, 2019 => BOOMv2<br>F. A. Fuchs, KTH, 2021 => Tooba                                                                                             |  |  |  |  |  |
| 2017-<br>5715          | BTI (v2)          | Jin et al., ACM Trans. Archit. Code Optim. 2023 =><br>BOOMv3<br>Cheng et al., USENIX Security 24 => BOOMv3                                                                 |  |  |  |  |  |
| 2017-<br>5754          | RDCL (v3)         | Lin et al, IEEE MWSCAS 2022 => BOOMv3                                                                                                                                      |  |  |  |  |  |
| 2018-<br>15572         | Ret2spec (v5)     | F. A. Fuchs, KTH, 2021 => Tooba<br>Jin et al., ACM Trans. Archit. Code Optim. 2023 =><br>BOOMv3<br>Cheng et al., USENIX Security 24 => BOOMv3                              |  |  |  |  |  |
| 2018-<br>3639 SSB (v4) |                   | F. A. Fuchs, KTH, 2021 => Tooba<br>Jin et al., ACM Trans. Archit. Code Optim. 2023 =><br>BOOMv3<br>Cheng et al., USENIX Security 24 => BOOMv3<br><b>Our work =&gt; RSD</b> |  |  |  |  |  |
|                        | SpectreRewin<br>d | Jin et al., ACM Trans. Archit. Code Optim. 2023 =>                                                                                                                         |  |  |  |  |  |
| Unind<br>exed          | Spectre-TLB       | BOOMv3                                                                                                                                                                     |  |  |  |  |  |
|                        | Bombard           | $H_{\rm M} \text{ at al}  ACM CCS 2022 \rightarrow DOOM \ \& N_{\rm M} \text{ tabel} = 11$                                                                                 |  |  |  |  |  |
|                        | Birgus            | Hur et al., ACM CCS 2022 => BOOM & Nutshell                                                                                                                                |  |  |  |  |  |


Open-Source RISC-V processor RSD

- RSD: an RV32IMF out-of-order superscalar processor core
  - Advantages: compact, can be synthesized for small FPGAs; and efficient, featuring a memory dependence prediction mechanism.
  - Conference paper: <u>S. Mashimo et al., "An Open Source FPGA-Optimized</u> <u>Out-of-Order RISC-V Soft Processor," in 2019 International Conference on</u> <u>Field-Programmable Technology (ICFPT), Dec. 2019, pp. 63–71.</u>
  - Main RSD repository: <u>https://github.com/rsd-devel/rsd</u>
  - Forked and modified RSD repo: <u>https://github.com/cctsirjin/rsd-mod</u>

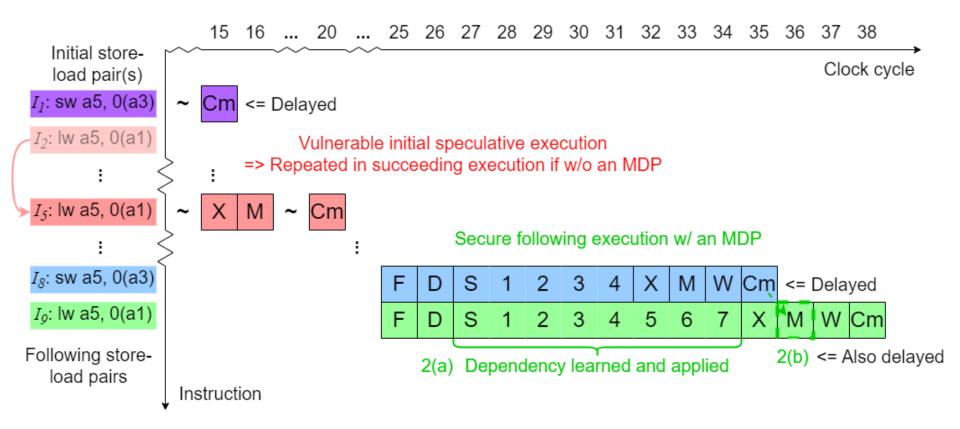



Speculative Store Bypass (SSB) vulnerability (1)

- Exploiting speculative load/store execution
  - 1. The first *n* (temporarily let n=1) store-load instruction pair  $I_1 + I_2$  enters the pipeline and accesses the same memory address.
  - 2. In the absence of prior execution, the CPU cannot determine whether load  $I_2$  is dependent on store  $I_1$ . To accelerate execution, typically it <u>speculatively</u> <u>assumes they are independent</u>.

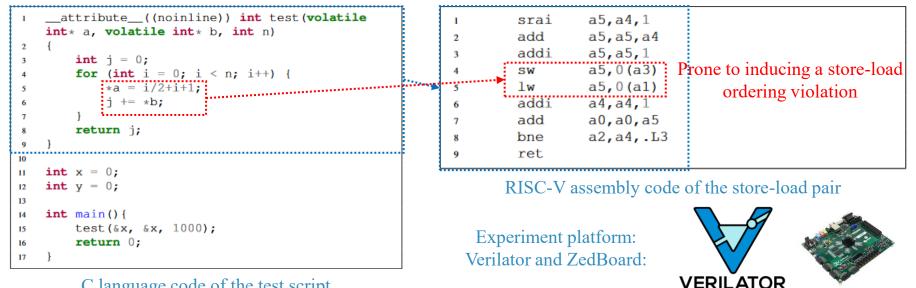


Speculative Store Bypass (SSB) vulnerability (2)


- Exploiting speculative load/store execution (*cont'd*)
  - 3. Owing to that assumption, secret data are loaded from the memory into the cache in 1(b), simultaneously with the store operation during 1(a).
  - 4. The attacker then conducts a side-channel attack on the cache to extract the secret data, as depicted in 1(c). The detection of memory ordering violation and rollback later at  $I_5$  cannot undo this damage.



Speculative Store Bypass (SSB) vulnerability (3)


- In subsequent executions after the initial one(s) ...
  - Processors w/o an MDP, such as BOOM, can be constantly exploited.
  - An MDP is anticipated to form a *partial* defense, as depicted in 2(a) and 2(b)

of store-load pair  $I_8 + I_9$ . However, the initial *n* round(s) remain vulnerable.





- Since RSD is open source, it is possible to determine the *n* by analyzing its source codes. However, compared to this theoretical approach ...
- A more empirical method involves executing a script that is prone to inducing memory ordering violations and subsequently observing the pipeline's behavior through a visualization tool, "Konata".



C language code of the test script

# Attack verification (2)

- Identifying the MDP trigger value n of RSD (cont'd)
  - From Fig. 1, it can be confirmed that our early assumption of n = 1 is correct.

Also from Fig. 2, it is evident that the learned dependency was applied.

| 12730: s54568 (t0: r12608): 00001e9c: srai a5, a4, 0x1    |                                                                                    | Cm (Commit)           |
|-----------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------|
| 12731: s54572 (t0: r12609): 00001ea0: add a5, a5, a4      | F Pd Dc Rn Ds Sc Is Rr X Rw Cm 0x1ea8 (line 12733): store from a5 to [a3]          | in (commune)          |
| 12732: s54576 (t0: r12610): 00001ea4: addi a5, a5, 0x1    | F Pd Dc Rn Ds Sc 1 Is Rr X Rw Cm                                                   | and the second second |
| 12733: s54580 (t0: r12611): 00001ea8: sw a5, 0x0(a3)      | Np sti 1 2 3 4 5 6 7 8 9 10 11 12 13 F Pd Dc Rn Ds Sc Is Rr X Mt Ma Rw 1 2 3 4 5 6 | 7 8 9 10 Cm           |
| 12734: s54584 (t0: r0): 00001eac: lw a5, 0x0(a1)          | Np st1 1 2 3 4 5 6 7 8 9 10 11 12 13 F Pd Dc Rn Ds Sc Is Rn X Mt Ma Rw 1 2         |                       |
| 12735: s54588 (t0: r0) 0x1eac (line 12734)                | sepculatively load from [a1] to a5 Np stl 1 2 3 4 5 6 7 8 9 10                     | tion due to violation |
| 12736: s54592 (t0: r0):                                   | Np stl 1 2 3 4 5 6 7 8 9 10                                                        | Ý.,                   |
| 12737: s54596 (t0: r12612): 00001eac: lw a5, 0x0(a1)      | Np stl 1 2 3 F                                                                     | Pd Dc Rn Ds Sc        |
| 12738: s54600 (t0: r12613): 00001eb0: addi a4, a4, 0x1    | Oviace (line12727), vertex previous load                                           | F Pd Dc Rn Ds         |
| 12739: s54604 (t0: r12614): 00001eb4: add a0, a0, a5      | 0x1eac (line12737): replay previous load                                           | F Pd Dc Rn Ds         |
| 12740: s54608 (t0: r12615): 00001eb8: bne a2, a4, 0xfffff |                                                                                    | Np stl 1 2 3          |

### Fig. 1: Pipeline behavior during the initial round of MDP test

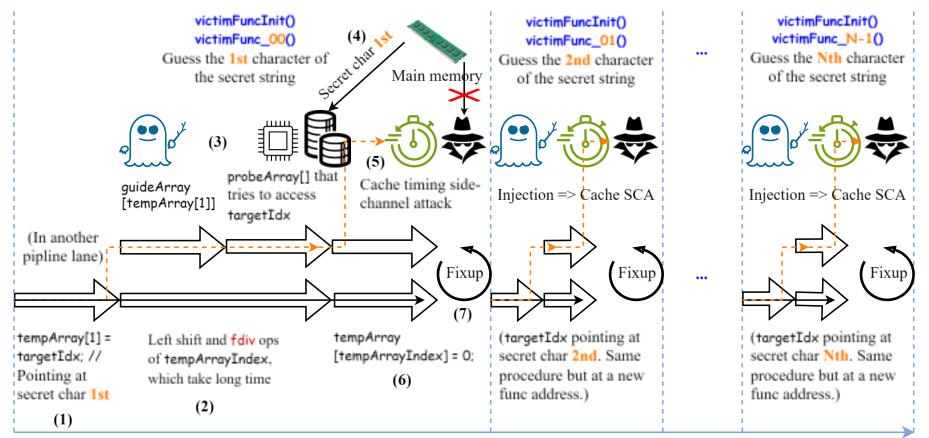

| 12745: s54628 (t0: r12616): 00001e9c: srai a5, a4, 0x1<br>12746: s54632 (t0: r12617): 00001ea0: add a5, a5, a4<br>12747: s54636 (t0: r12618): 00001ea4: addi a5, a5, 0x1<br>12748: s54640 (t0: r12619): 00001ea8: sw a5, 0x0(a3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | No. F. Dd. Dc. Do. Co. 1. To. Do. V. Mt. Mo. Destroy                                                                                                                                                                                          | Sc (Scheduling) of lw are<br>extended from the 2nd loop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12749: s54644 (t0: r12620): 00001eac: lw a5, 0x0(a1)<br>12750: s54648 (t0: r12621): 00001eb0: addi a4, a4, 0x1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Np     F     Pd     Dc     Rn     Ds     Sc     1     2     3     4     TS     Rr     X     Mt     Ma     Rw     Cm       Np     F     Pd     Dc     Rn     Ds     Sc     I     2     3     4     TS     Rr     X     Mt     Ma     Rw     Cm | for a correct store-load order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 12751: s54652 (t0: r12622): 00 12751: s54652 (t0: r12622): 00001eb8: bne a2, a4, 0xfffff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 749 Np F Pd Dc Rn Ds Sc 1 2 3 4 5 6 Is Rr X R 1 2                                                                                                                                                                                             | <u>3 4 5 6 7 8 9 10 Cm</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 12753: <u>254555</u> (28: 23.2673)(23012020: 202120)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(23.2013)(2 |                                                                                                                                                                                                                                               | 0 <sup>7</sup> / <sup>6</sup> 5 <sup>4</sup> 10 <sup>6</sup> 11 <sup>6</sup> 12 <sup>6</sup> 15 <sup>4</sup> 14 <sup>6</sup> 15 <sup>6</sup> 11 <sup>6</sup> 1.0 <sup>6</sup> 11 <sup>6</sup> 1.0 <sup>6</sup> 11 <sup>6</sup> 1.0 <sup>6</sup> 10 <sup>6</sup> |
| 12755: \$54672 (t0: r12626): 00001ea4: add d5, 85, 0x1<br>12755: \$54676 (t0: r12626): 00001ea4: addi a5, a5, 0x1<br>12756: \$54676 (t0: r12627): 00001ea8: sw a5, 0x0(a3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Np F Pd Dc Rn Ds Sc 1 Is Rr X Rw 1 2 3                                                                                                                                                                                                        | 4 5 6 7 8 9 10 11 12 13 14 Cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2757: s54680 (t0: r12628): 00001eac: lw a5, 0x0(a1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NpFPdDcRnDsSc1IsRrYMtMaRwNpFPdDcRnDsSc1234IsRrX                                                                                                                                                                                               | I         2         3         4         5         6         7         8         9         10         11         Cm           Mt         Ma         Rw         1         2         3         4         5         6         7         8         9         Cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 12758: s54684 (t0: r12629): 00001eb0: addi a4, a4, 0x1<br>12759: s54688 (t0: r12630): 00001eb4: add a0, a0, a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e 12756 to 12757 Np F Pd Dc Rn Ds Sc Is Rr X Rw 1 2<br>Np F Pd Dc Rn Ds Sc I 2 3 4 5 6                                                                                                                                                        | 3         4         5         6         7         8         9         10         11         12         13         14         Cm           Is         Rr         X         Rw         1         2         3         4         5         6         7         8         9         C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| m 12760: s54692 (t0: r12631): 00001eb8: bne a2, a4, 0xff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Np     F     Pd     Dc     Rn     Ds     Sc     1     Is     Rr     X     Rw                                                                                                                                                                  | 1 2 3 4 5 6 7 8 9 10 11 12 13 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

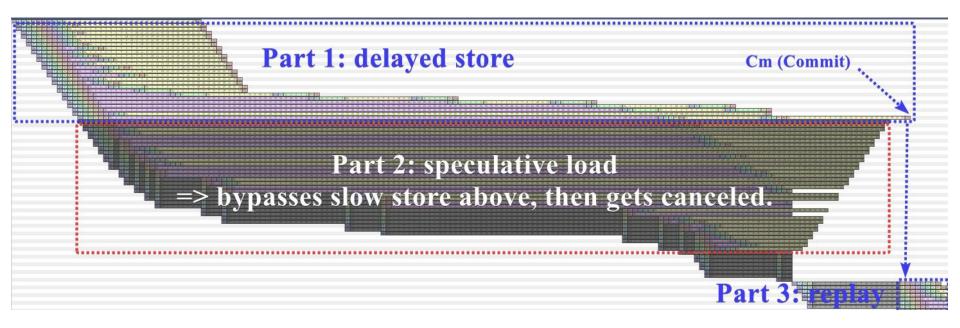
Fig. 2: Pipeline behavior in subsequent loops of the MDP test (from the 2nd execution onward)

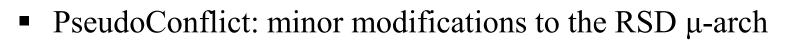
# Attack verification (3)

- SSB attack process and result
  - Switching among addresses victimFunc\_00(), ..., \_N-1() to keep exploiting

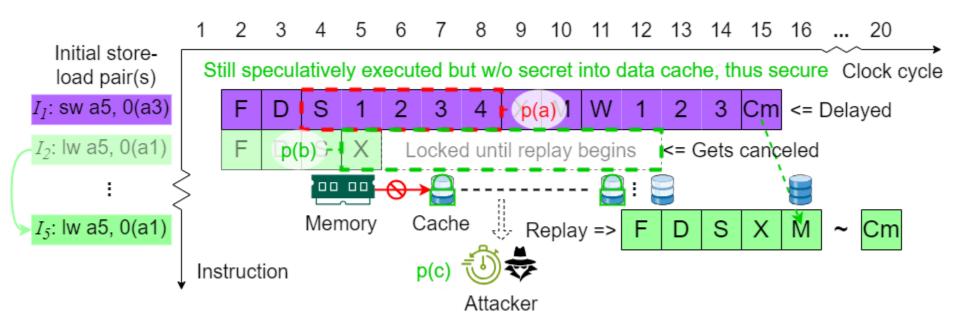
the property n = 1 and extracting secret characters successively.



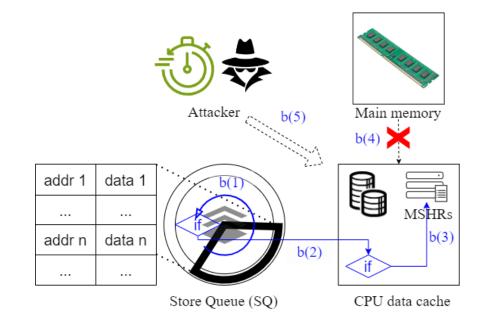

Time, also flow of the main() function


# Attack verification (4)

- SSB attack process and result (cont'd)
  - The secret string "RISCV" was correctly inferred. The execution log was also analyzed using the Konata tool.
- 1 ===Start===
  2 Value: R Hit: 4
  3 Value: I Hit: 1
  4 Value: S Hit: 2
  5 Value: C Hit: 3
  6 Value: V Hit: 5
  7 ===End===


INSTITUTE of INFORMATION SECURITY

Part 1 represents an intentionally delayed store operation. RSD issues a speculative load operation in Part 2, entering a transient execution state and causing one secret character into the dcache. It's later rolled back in Part 3.






- Idea: When a preceding store has an unresolved address, a subsequent load will be prevented from memory accesses, even in the event of a cache miss.
- The proposed method is illustrated in p(b). If the address of the preceding store I<sub>1</sub> remains unresolved, a locking mechanism can be introduced starting from the eXecution stage of I<sub>2</sub> in place of the former Memory stage.



- Implementation of PseudoConflict
  - Store Queue (SQ): if a preceding store has been issued, its address and data are recorded. During the execution of a load, the system checks whether any preceding stores contain unresolved addresses.
  - Miss Status Handling Registers (MSHRs): if a preceding store operation with an unresolved address exists, MSHR allocation will be suppressed.



# Hardware mitigation (3)

- Results after application of PseudoConflict
  - On the same Verilator and ZedBoard platform, the effectiveness of mitigation was confirmed.
- Evaluation of the mitigation

| 1 | ===Start=== |   |      | 1 | ===Start=== |        |      |   |
|---|-------------|---|------|---|-------------|--------|------|---|
| 2 | Value:      | R | Hit: | 4 | 2           | Value: | Hit: | 0 |
| 3 | Value:      | Ι | Hit: | 1 | 3           | Value: | Hit: | 0 |
| 4 | Value:      | S | Hit: | 2 | 4           | Value: | Hit: | 0 |
| 5 | Value:      | С | Hit: | 3 | 5           | Value: | Hit: | 0 |
| 6 | Value:      | V | Hit: | 5 | 6           | Value: | Hit: | 0 |
| 7 | 7 ===End=== |   |      | 7 | ===End      | ====   |      |   |

- The CoreMark score / MHz (CM / MHz) and the Dhrystone MIPS (DMIPS): The baseline and the proposal are identical or nearly identical.
- FPGA resource utilization: The mitigation leads to only a slight increase that is insignificant in the demand for LUTs and registers.
- The operation frequency of the RSD remains unchanged, as the proposed method does not affect the critical path.

|          | CM/MHz       | DMIPS         | LUT             | Register        |
|----------|--------------|---------------|-----------------|-----------------|
| Baseline | 2.675 (100%) | 201.0 (100%)  | 25956 (100%)    | 11901 (100%)    |
| Proposal | 2.675 (100%) | 200.6 (99.8%) | 26028 (100.28%) | 11904 (100.03%) |



- Since the modified RSD still performs speculative execution of loads, <u>it does</u> <u>not interfere with the normal operation of the MDP</u> and preserves the initial memory dependency learning process.
- Low-cost and highly efficient. Using precisely the characteristic of an SSB attack as a prerequisite to trigger the defense, the impact on program executions is minimal, resulting in low overhead. Hardware-based approach also offers greater cost advantages.
- Versatile. Not dependent on the specific design of RSD and may be ported to other OoO CPUs.

- Current limitations of PseudoConflict
  - In implementing this mitigation, it is crucial to examine the compatibility with other CPU components beyond the SQ and data cache, such as the Replay Queue (RQ) of RSD in this paper, necessitating more granular hardware adjustments.
  - We have not yet conducted a statistical analysis on the proportion of normal, non-malicious programs exhibiting "preceding store with an unresolved address" behavior, similar to SSB attacks, across various real-world application scenarios. Therefore, we cannot accurately estimate the extent of the impact that widespread adoption of this mitigation across many CPUs would cause.

# Conclusion

- Findings
  - For an OoO CPU like RSD, even if an MDP is present and only the first loop of execution is susceptible to SSB, it is still sufficient for exploitation.
  - On the other hand, this vulnerability can also be remedied with minimal effort at the hardware level, and the mitigation is generic.
- Future work
  - Adversary: Enhancing the existing SSB algorithm using new methodologies to achieve similar or improved results and efficiency.
  - Defense: Conduct additional assessments of performance impact to support large-scale adoption of PseudoConflict's framework.

# For more details

- Analyzing and Mitigating the SSB Vulnerability in an MDP-Equipped RISC-V Processor
  - International Workshop on Security (IWSEC) 2025
  - @ Fukuoka, Japan. Nov. 25-27

https://www.iwsec.org/2025/index.html

IISEC Suzaki Lab

https://lab.iisec.ac.jp/~suzaki\_lab/i ndex.html



• U Tokyo Shioya Lab

https://www.rsg.ci.i.u-tokyo.ac.jp/lab/



