@
A INSTITUTE of INFORMATION SECURITY

Open-Source Computer Architecture Research (OSCAR)
2025-06-21 Tokyo, Japan

Speculative Store Bypass Vulnerability in
a Memory Dependence Predictor-
Equipped RISC-" Processor

Tuo Chen', Reoma Matsuo?, Ryota Shioya?, and Kuniyasu Suzaki!

U Institute of Information Security

mes234502@iisec.ac.jp, suzaki(@iisec.ac.ip

2 Department of Creative Informatics, Graduate School of Information Science and
Tlechnology, The University of Tokyo

matsuo(@rsg.ci.i.u-tokyo.ac.jp, shioya@ci.i.u-tokyo.ac.jp



mailto:mgs234502@iisec.ac.jp
mailto:suzaki@iisec.ac.jp
mailto:matsuo@rsg.ci.i.u-tokyo.ac.jp
mailto:shioya@ci.i.u-tokyo.ac.jp

Contents - 2
i 4 INSTITUTE of INFORMATION SECURITY

= Overview

* Open-Source RISC-V processor RSD

» Speculative Store Bypass (SSB) vulnerability
» Attack verification

* Hardware mitigation

= Conclusion



Overview 3

@
‘ A INSTITUTE of INFORMATION SECURITY

* Transient execution vulnerabilities (TEVs) 1dentified in CPUs

* Growing attention on situation of RISC-" implementations

u Existing gap Processors of various ISAs (including RISC-")
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= RSD: an RV32IMF out-of-order superscalar processor core
= Advantages: compact, can be synthesized for small FPGAs; and efficient,
featuring a memory dependence prediction mechanism.

= Conference paper: S. Mashimo et al., “An Open Source FPGA-Optimized

Out-of-Order RISC-V Soft Processor.” in 2019 International Conference on
Field-Programmable Technology (ICFPT), Dec. 2019, pp. 63-71.

= Main RSD repository: https://github.com/rsd-devel/rsd

» Forked and modified RSD repo: https://github.com/cctsirjin/rsd-mod

o o

Fetcher Decoder Renamer

Unified Issue Queue (16 entries)

Rex glster File (Int 64 entries)

I
Register File (FP 64 entries)
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= Exploiting speculative load/store execution

6

1. The first n (temporarily let n=1) store-load instruction pair /, + /, enters the

pipeline and accesses the same memory address.

2. In the absence of prior execution, the CPU cannot determine whether load 7,

is dependent on store /,. To accelerate execution, typically it speculatively

assumes they are independent.

Initial store-
load pair(s)

I,:lw ad, 0(a1)

I5: lw ad, 0(a1)

s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 20
Vulnerable initial speculative execution ?ﬂck cycI;
<= Delayed
<= Gets car‘l‘(zeled
—_— @ = ll E 9 ‘E
Memory Secret Cache Replay =>| F S | X ﬂn ~ ‘Cm

i Instruction

Attacker
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= Exploiting speculative load/store execution (cont’d)

7

3.  Owing to that assumption, secret data are loaded from the memory into the

cache in 1(b), simultaneously with the store operation during 1(a).

4. The attacker then conducts a side-channel attack on the cache to extract the

secret data, as depicted in 1(c). The detection of memory ordering violation

and rollback later at /; cannot undo this damage.

Initial store-
load pair(s)

I,:lw ad, 0(a1)

I5: lw ad, 0(a1)

s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 20
Vulnerable initial speculative execution ?ﬂck cycI;
<= Delayed
<= Gets car‘l‘(zeled
—_— Qo 2 t' E 9 ‘E
Memory Secret Cache Replay =>| F S | X Kn ~ ‘Cm

i Instruction

Attacker
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* In subsequent executions after the initial one(s) ...

= Processors w/o an MDP, such as BOOM, can be constantly exploited.
= An MDP is anticipated to form a partial defense, as depicted in 2(a) and 2(b)

of store-load pair /; + I,. However, the 1nitial » round(s) remain vulnerable.

15 16 .. 20 .. 25 26 27 28 29 30 31 32 33 34 35 36 37 38

Initial store- ™" T T

load pair(s) Clock cycle
HESWES0E) | ~ B <- Delayed

I>:lw ab, 0(al)

-

Vulnerable initial speculative execution

§ . => Repeated in succeeding execution if w/o an MDP

Isslwad,0(@l) |~ | X |M| ~ ICm
§ . Secure following execution w/ an MDP

Ig: sw ad, 0(a3) FID|S 1 2 3 4|X|M|W Cm|<=Delayed

Ip: lw a5, O(a1) FID/IS 1 2 3 4 5 6 7|X[M{w[Cm

. ) - g - —
Folllowmg store 2(a) Dependency learned and applied 2(b) <= Also delayed
oad pairs

! Instruction
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* [dentifying the MDP trigger value n of RSD

= Since RSD is open source, it 1s possible to determine the n by analyzing its

source codes. However, compared to this theoretical approach ...

= A more empirical method involves executing a script that is prone to inducing

memory ordering violations and subsequently observing the pipeline's

behavior through a visualization tool,

“Konata”.

__attribute_ ((noinline)) int test (volatile

int«

{

a, wvolatile int+ b, int n)
int j = 0;
for (int i = 0; i < nj; i

j += =b;

maini{) {
test (&x, &x,
return 0;

1000);

1 srail ab,ad,1

2 add ab,ab,ad

3 addi ab,ab5,1

\ ?HEE ............. Eﬁtﬁfﬂéﬁﬁ
RTINS ﬁ 1w ab,D{al}§

) et 33?53:7 .....

7 add al,al, ab

8 bne az,ad, .L3

9 rel

P’éfone to inducing a store-load
ordering violation

C language code of the test script

Experiment platform:
Verilator and ZedBoard:

VERILATOR
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= Identifying the MDP trigger value n of RSD (cont’d)

= From Fig. 1, it can be confirmed that our early assumption of n = [ is correct.

Also from Fig. 2, it is evident that the learned dependency was applied.

12730: s54568 (t6: r12688)
12731: 554572 (t6: ri2689):
12732: s54576 (t0: ri12618):

112733 554588 (t8: ri2611):
.illlllllllllll (11111
12734 554584 (teé: re
12735 554588 (te:

12736: 5545892 (té: re)

555555555555
vadeleac:

28881e9c: srai a5, a4, ax1
208elea@: add a5, a5, a4
8@eelead: addi a5, a5, exl

2@eeleal: sw a5, @x@(a3)
BEARERARERARNERNRERNLY
W a5, exe(al

F [Pd]Dc[Rn[Ds[sc]as[Rr] x [ Rw][cm]
1 [1s[Re ] X [Rw]cm]

F [pd]Dc]Rn[Ds[sc

Ox1ea8 (line 12733): store from a5 to [a3]

Cm (Commit)

4 5 6 7 8 9 18 11 12

stl1 1 2 3

12738: s5460@ (te:
12739: 554604 (te:
12749: 554608 (teO:

r12613):
r12614):
r12615):

12745: 554628 (t8: ri2616):
12746: 554632 (t8: ri2617):

12747; 554636 (t0: r12618):
4272817554846 " (161 r12e13) -
§2749 s54644 (10: 112620):

1)
12750: 554648 (te: I"12621)

12751: 554652 (t@: ri12622): eeldJH;e 112;48; to 12749 [wp[ F [pd]oc

12752: 554656 (t8: ri2623):

ADTIR5 SEASES. 0.t R8I

12754: 554668 (té: r"12625)
12755: s54672 (tl‘a r"12626)

;27756 554676 (10: r12627):
i2757 s54680 (to: r12628):
A

12758: 554684 (t0: r12629)-
m]12759: 554688 (t6: r12630): 06@0lebd: add 20, ae, ahne 12756 to 12757

E12769: 554692 (t0: ri12631): @0801eb3: bne a2, ad, exffifff

@oeelebe: addi a4, a4, exi
@oeelebs: add ae, a@, as
28881eb8: bne a2, a4, exffffff

Ox1leac (linel2737): replay previous load

13

T T
\Np|F|Pd|Dc|Rn|Ds|

e

Fig. 1: Pipeline behavior during the initial round of MDP test

2eeeled9c: srai a5, a4, exil

00001ead: add a5, a5, ad
e@e@lead: addi a5, a5, exl
LI LI L

06001eal: sw a5, 9x0(a3)

8800leac: lw a5, @x@(al)

.
eeaelebe addi a4, a4, exi

80001eb8: bne a2, ad, 8xff

LAnnn

2o

snEERaREER
86661&38 sw a5
80801eac:

g thaal, ool e, o
988@12ad: add a5, a5, a4
28681ead: addl a5, a5, exl
exe(a3)
lw a5, ex8(al)

88681eb8: addi a4, ad, 8x1

| F|pd|Dc|Rn|Ds|Sc|Is|Rr| X | Ru|cm|
[Mp[ F [rd[Dc|rn[Ds[sc[as[rr[ x [Ru[cm]

Sc (Scheduling) of lw are

[ ¢ [pa[oc|rn[os[sc 1 [1s]rr] x | Ru]cn “,::-_-_-_-_'.'" + extended from the 2nd loop
Mp | F |Pd|Dc |Rn|Ds|Sc_ 1 |Is|Rr| X | Mt | Maewiflm| E, f | d d
maale] P4 ] oc [Lrn Jinslic e " é‘| Rr| X | it | #a ] Ru [cn s or a correct store-load order
Np | F |Pd|Dc|Rn|Ds|Sc|Is|Rr| X |Rw 1 2 3 4 5 )
[anfos[sc 1 2 3 4 5 ezs[a[x[rRf 1 2 3 4 5 6 7 8 9 1ecn]

FFFF |Np|F|pd|Dc|Rn\Ds|5c\Is|Rr~|x|Rw 1 2 3 4 &% 6 7 8 9 18 11 12 13 14 15| cm|
[va"; Ir”]‘ U b I Lir 1 u:’[ £C’] Lb"'[ Ju“’| IA"|' L S -';a-l 47 57 o7 47 87 y'Tad T ANT 177 a5 7 a7 ﬂ‘j‘[ \|_m|
[mp] £ [rd]pc]ra]Ds]scfasre]x]rw 12 @ 3 4 5 6 7 8 9 10 11 12 13 14][cm]
[seloehedlioc] fn[ps [sc_: gsleclllrecl 2 3 4 5 6 7 8 9 10 11 12 13 14|cm]
- e T e e T Pl T T s e T ey 5 sk ula ey
2 3 a4 H

2 6 7 8 9
Inalscalgdne]rn]ps]sc 1 2 3 a4 s clpslealgles 1 2 3 a4 5 6 7 8 9]«
[mp] F [Pd]oc]ra]Ds]sc 1 JasJre]x]JrRw 1 2 3 4 5 6 7 8 9 18 11 12 13]C

Fig. 2: Pipeline behavior in subsequent loops of the MDP test (from the 2nd execution onward)



Attack verification (3) - 11

‘ A INSTITUTE of INFORMATION SECURITY

= SSB attack process and result

= Switching among addresses victimFunc 00(), ..., N-1() to keep exploiting

the property n = I and extracting secret characters successively.

victimFuncInit() victimFuncInit() victimFuncInit()
victimFune_00() 4) & \ victimFunc_01() victimFunc_MN-1()
. . < h _ - :
Guess the 151 character of ag& Guess the 2nd character Guess the Nih character
the secret string Main memgry of the secret string of the secret string

TTTTTT

‘,Elo/ 3) ij:j: @(5) $ T:;'.Q /—‘@%. ‘@o}—‘@g‘-}

probeArray[] that , Cache timing side- ' '
. - o Injection => Cache SCA Injection => Cache SCA
channel attack

targetldx E :

{.In.unm.hcr T AN _ -
pipline lane), : :
' leup ' Fixup : Fixup
!

guideArray

[TempArilﬂay[l]l tries 1o access

i NG N
' L L (7)

tempArray]l] = Left shift and fdiv ops +En1.1:-.ﬂ.r'r'-|:r',' {'rﬂrgei'tdx pomniing at (targetIdx pomnting at
targetldx; // of tempArrayIndesx. [tempArrayIndex] = O secrel char 2nd. Same secret char Mih. Saime
Pointing at which take long time (6) procedure but at a new procedure but at a new
secrel char 1si func address.) func address.)
(2)
(1)

Time, also flow of the main() function
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1 ===Start=—=
2 WValus=: R Hit:
a4 WValus: I Hit:
4 Value: § Hit:
i
a
T

= SSB attack process and result (cont’d)

= The secret string “RISCV” was correctly inferred. The

Value: C Hit:
Valu=: ¥V Hit:
===FEnd===

AW k= s

execution log was also analyzed using the Konata tool.

= Part 1 represents an intentionally delayed store operation. RSD issues a
speculative load operation in Part 2, entering a transient execution state and
causing one secret character into the dcache. It’s later rolled back in Part 3.

Part 2: speculative load
=> bypasses slow store above, then gets canceled.
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= PseudoConflict: minor modifications to the RSD p-arch

= Idea: When a preceding store has an unresolved address, a subsequent load
will be prevented from memory accesses, even in the event of a cache miss.

= The proposed method is illustrated in p(b). If the address of the preceding
store /, remains unresolved, a locking mechanism can be introduced starting

from the eXecution stage of 7, in place of the former Memory stage.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 .. 20

Initial store- _ _ . T >
load pair(s) Still speculatively executed but w/o secret into data cache, thus secure Clock cycle

I,:lw a5, 0(a1)

s - o e < T .

Is: lw a5, 0(a1) Memory ~ Cache i Replay=>| F |D | S | X M|~ lcm

J Instruction p(c) @é

Attacker
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* Implementation of PseudoConflict

= Store Queue (SQ): if a preceding store has been issued, its address and data

are recorded. During the execution of a load, the system checks whether any

preceding stores contain unresolved addresses.

= Miss Status Handling Registers (MSHRSs): 1f a preceding store operation with

an unresolved address exists, MSHR allocation will be suppressed.

[
W

Attacker . b(5)

addr 1

data 1 .

addrn

data n

~

Main memory

:

Store Queue (5Q)

CPU data cache
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= Results after application of PseudoConflict | 5T, .11 T, &
a3 Value: I Hit: 1 3 Value Hit: O
= On the same Verilator and ZedBoard platform, — |: J2ueys e = e 0
¢ Value: V Hit: 5 6 Value H:i_t; 0

===End=== 7 ===End===

the effectiveness of mitigation was confirmed. "

= Evaluation of the mitigation

* The CoreMark score / MHz (CM / MHz) and the Dhrystone MIPS (DMIPS):

The baseline and the proposal are identical or nearly identical.

* FPGA resource utilization: The mitigation leads to only a slight increase that

is insignificant in the demand for LUTs and registers.

* The operation frequency of the RSD remains unchanged, as the proposed

method does not affect the critical path.

| CMMHz | DMIPS_ | LUT | Register

11901 (100%)

Baseline 2.675(100%) 201.0 (100%) 25956 (100%)

Proposal 2.675 (100%) 200.6 (99.8%) 26028 (100.28%)

11904 (100.03%)
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= Benetits of PseudoConflict

= Since the modified RSD still performs speculative execution of loads, it does

not interfere with the normal operation of the MDP and preserves the initial

memory dependency learning process.

= Low-cost and highly efficient. Using precisely the characteristic of an SSB

attack as a prerequisite to trigger the defense, the impact on program

executions is minimal, resulting in low overhead. Hardware-based approach

also offers greater cost advantages.

= Versatile. Not dependent on the specific design of RSD and may be ported to
other OoO CPUs.
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= Current limitations of PseudoConflict

= In implementing this mitigation, it is crucial to examine the compatibility
with other CPU components beyond the SQ and data cache, such as the
Replay Queue (RQ) of RSD in this paper, necessitating more granular
hardware adjustments.

= We have not yet conducted a statistical analysis on the proportion of normal,
non-malicious programs exhibiting "preceding store with an unresolved
address' behavior, similar to SSB attacks, across various real-world
application scenarios. Therefore, we cannot accurately estimate the extent
of the impact that widespread adoption of this mitigation across many CPUs

would cause.
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* Findings
= For an OoO CPU like RSD, even if an MDP i1s present and only the first loop
of execution 1s susceptible to SSB, it is still sufficient for exploitation.
= On the other hand, this vulnerability can also be remedied with minimal effort

at the hardware level, and the mitigation is generic.

* Future work
= Adversary: Enhancing the existing SSB algorithm using new methodologies
to achieve similar or improved results and efficiency.
= Defense: Conduct additional assessments of performance impact to support

large-scale adoption of PseudoConflict's framework.
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* Analyzing and Mitigating the SSB Vulnerability E

in an MDP-Equipped RISC-V Processor ;

= International Workshop on Security IWSEC) 2025
(@ Fukuoka, Japan. Nov. 25-27

https://www.iwsec.org/2025/index.html

* IISEC Suzaki Lab * U Tokyo Shioya Lab

https://lab.1isec.ac.jp/~suzaki lab/i  https://www.rsg.ci.i.u-tokyo.ac.jp/lab/
ndex.html
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