

SECDA Design Suite

Efficient HW-SW Co-Design of DNN Accelerators for Edge Inference

Jude Haris, José Cano

School of Computing Science University of Glasgow, Scotland, UK

Glasgow Intelligent Computing Lab (gicLAB)

School of Computing Science Systems Section (GLASS) Computing Systems & Machine Learning & Security

https://giclab.dcs.gla.ac.uk/

Key concept: Deep Learning Acceleration Stack (DLAS)

Neural Network Models & Datasets (Image, video, voice, text, etc)

Optimization Techniques (Pruning, quantization, NAS/HPO, etc)

Algorithmic Primitives & Data Formats (GEMM, Winograd, CSR, Encryption, etc)

Systems Software (Libraries, frameworks, compilers, etc)

Hardware (Server class, Edge/IoT/Tiny devices)

Across-stack optimizations are required to provide efficient solutions!

[P. Gibson, <u>J. Cano</u>, E. J. Crowley, A. Storkey, M. O'Boyle, "*DLAS: A Conceptual Model for Across-Stack Deep Learning Acceleration*", **ACM TACO'25**]

Outline

- SECDA Methodology
- SECDA Design Suite
 - Core
 - Instantiations
 - SECDA-TFLite
 - SECDA-LLM
 - SECDA-Sandbox
 - -Benchmarking
- Conclusions and Future Work

Developing Specialized Accelerators for Edge AI

- Motivation: specialized hardware accelerators (ASICs, FPGAs, etc) can make AI faster and more energy efficient (e.g. at the edge)
 - FPGAs are reconfigurable circuits commonly present in edge devices

- **Problem**: current solutions for designing AI accelerators for edge devices with FPGAs have a very high development cost
 - They require High Level Synthesis (HLS)
 - FPGA synthesis is a very slow process that is repeated (over designs)
 - System integration issues (e.g. accelerator and DNN framework)
- **Solution**: we proposed a design methodology (SECDA) to efficiently reduce the development time of FPGA-based accelerators (for edge devices)
 - Combines cost-effective SystemC simulation with hardware execution

High Level Synthesis (HLS) **High Level** Libraries Program (SystemC) HLS Compiler RTL design (verilog) **FPGA** Logic Synthesis **FPGA** device

University

SECDA Methodology: Overview

*[J. Haris, P. Gibson, <u>J. Cano</u>, N. B. Agostini, D. Kaeli, "SECDA: Efficient Hardware/Software Co-Design of FPGAbased DNN Accelerators for Edge Inference", **SBAC-PAD'21**]

Outline

- SECDA Methodology
- SECDA Design Suite
 - Core
 - Instantiations
 - SECDA-TFLite
 - SECDA-LLM
 - SECDA-Sandbox
 - Benchmarking
- Conclusions and Future Work

SECDA Design Suite

- Provides a Hardware-Software co-design environment: SECDA, ML frameworks, custom workloads
- SECDA-Core library of tools that enables SECDA; supported with Bazel and CMake build systems
- Three SECDA Instantiations: SECDA-TFLite, SECDA-LLM and SECDA-Sandbox
- Systematic **Benchmarking** to ease testing and evaluation of new designs

https://github.com/gicLAB/SECDA-Design-Suite

SECDA-Core

- AXI-API: defines communication channels and data transfers between accelerator and CPU
- SystemC HW Modules: simulation and development of new accelerators (e.g., DMA Engine module)
- ML Utilities: helper functions for pre/post-processing of ML operations (e.g., calculate data size of tensors)
- Multi-threading Support: CPU threads and tasks that interact with accelerators independently
- HW-SW profiler: enables extensive and detailed analysis of performance

TFLite Delegate System & API

- TensorFlow Lite (TFLite): framework for running DNN models on resource constrained edge devices
- The **Delegate system** enables to offload computation using different backends (software, hardware)
 - Examples: NNAPI delegate for Android, Core ML delegate for iOS, etc
- The **Delegate API** enables the development of **custom delegates**
 - $-\,VM_del,\,SA_del,\,\dots$

University of Glasgow

SECDA-TFLite

- A toolkit for designing custom FPGA-based accelerators for TFLite
- Instantiates the SECDA methodology within TFLite
- Enables fast prototyping and integration of new accelerators with significantly reduced initial setup costs

https://github.com/gicLAB/secda-tflite

*[J. Haris, P. Gibson, <u>J. Cano</u>, N. B. Agostini, D. Kaeli, "SECDA-TFLite: A Toolkit for Efficient Development of FPGAbased DNN Accelerators for Edge Inference", **Elsevier JPDC'23**]

llama.cpp

- A pure C/C++ library with minimal external dependencies
- Enables LLM inference with **minimal setup** and **state of the art performance** on a wide range of hardware devices
- Supports multi-modal, custom, and well-known LLMs (e.g., Llama, Falcon, GPT, Gemma)
- Utilizes GGUF (GPT-Generated Unified Format) and supports various type of quantization (1.5-bit, 2-bit, 3-bit, 4-bit, 5-bit, 6-bit, and 8-bit)
- **Open source**, with active and rapidly growing community

https://github.com/ggerganov/llama.cpp

SECDA-LLM

 A toolkit for designing custom FPGA-based accelerators for LLMs

 Instantiates the SECDA methodology within *llama.cpp*

 Enables fast prototyping and integration of new accelerators with significantly reduced initial setup costs

*[J. Haris, R. Saha, W. Hu, J. Cano, "Designing Efficient LLM Accelerators for Edge Devices", ARC-LG @ ISCA'24]

University

SECDA-Sandbox

- Allows you to work with custom workloads
- Enables exporting Hardware designs to SECDA-LLM or SECDA-TFLite for full-scale end-to-end evaluation
- Plans to further expand with non-Al workloads
 - HPC workloads

— ...

– Genome analysis

SECDA-Benchmarking

- Automates the process of running benchmarks on the target FPGA-based device and collecting the results
- Easy and flexible experiments: version control, automated visualization of results
- **Experiments**: Model x Accelerator x Metric
- **Metrics**: latency, throughput and power

Outline

- SECDA Methodology
- SECDA Design Suite
 - -Core
 - -Instantiations
 - SECDA-TFLite
 - SECDA-LLM
 - SECDA-Sandbox
 - -Benchmarking
- Conclusions and Future Work

Conclusions

- Accelerating AI applications on **Edge devices** is becoming more and more important
- SECDA is a design methodology to reduce the development time of specialized AI accelerators
- SECDA Design Tool provides an overall HW-SW co-design environment that enables developers to use the SECDA methodology supporting multiple ML frameworks and custom workloads
 - SECDA-TFLite is a new open source toolkit that improves/eases the development of new FPGAbased accelerators for edge DNN inference employing TFLite and the SECDA methodology
 - SECDA-LLM is a new toolkit that improves/eases the development of new FPGA-based accelerators for edge LLM inference employing *llama.cpp* and the SECDA methodology

Future Work

• On-going

- Expand SECDA-LLM as an open-source platform (more LLMs, datasets, and edge devices evaluated)
- Support more types of layers (e.g. transposed convolutions), cores (e.g. shift-based), sparsity
- SECDA-DSE: Automate the design space exploration process to design better hardware accelerators
- Planned
 - Design and Simulate Process-in-Memory (PIM)-Based Accelerators
 - Acceleration of AI applications on heterogeneous accelerators (GPUs, NPUs, FPGAs)
- Potential
 - Create similar development toolkits for other DNN frameworks such as PyTorch, TVM, etc
 - Developing Custom Accelerators for DNN Training at the edge

Acknowledgements

1) Researchers and students at gicLAB

2) Funding bodies

Engineering and Physical Sciences Research Council

Al Hub for Productive Research & Innovation in Electronics

3) Collaborators from Academia

SECDA Design Suite

Efficient HW-SW Co-Design of DNN Accelerators for Edge Inference

Jude Haris (j.haris.1@research.gla.ac.uk), José Cano (Jose.CanoReyes@glasgow.ac.uk)

School of Computing Science University of Glasgow, Scotland, UK

gicLAB: Publications

- Optimization Techniques
 - Optimizing Grouped Convolutions on Edge Devices ASAP'20
 - Improving Robustness Against Adversarial Attacks with Deeply Quantized Neural Networks IJCNN'23
 - ICE-Pruning: An Iterative Cost-Efficient Pruning Pipeline for Deep Neural Networks IJCNN'25
 - Exploiting Unstructured Sparsity in Fully Homomorphic Encrypted DNNs EuroMLSys @ EuroSys'25
- Systems Software
 - AXI4MLIR: User-Driven Automatic Host Code Generation for Custom AXI-Based Accelerators CGO'24
 - Transfer-Tuning: Reusing Auto-Schedules for Efficient Tensor Program Code Generation PACT'22
 - Bifrost: End-to-End Evaluation and Optimization of Reconfigurable DNN Accelerators ISPASS'22
- Hardware

JPDC'23

- SECDA-TFLite: A Toolkit for Efficient Development of FPGA-based DNN Accelerators for Edge Inference

SBAC-PAD'21

- SECDA-LLM: Designing Efficient LLM Accelerators for Edge Devices ARC-LG @ ISCA'24
- Accelerating PoT Quantization on Edge Devices ICECS'24
- Accelerating Transposed Convolutions on FPGA-based Edge Devices FPL'25