
1

Revisiting Hardware Priority 
Queue Architectures

Building an Open-Source Library for Evaluation and Design Exploration

Qihang (Charlie) Wu and Austin Rovinski



2

What is Priority Queue

Queue sorts elements based on priority values

● Elements sorted by priority first and insertion order second

9 5 4 3 2Max Priority enqueue

dequeue



3

Priority Queue Applications

● Task scheduling in operating systems
○ CPU scheduling algorithms

● Graph pathfinding algorithms
○ Dijkstra’s shortest path
○ A* Pathfinding algorithm [3]

● Event management and simulation
○ Network Package Management [2]
○ Discrete Event Simulations

A* Pathfinding Algorithm



4

Overview

● Priority Queue Overview
● Current Approaches and Limitations
● HWPQ Library Introduction
● Experimental Methodology
● Results and Insights
● Conclusion



5

Software Implementation

● Operations
○ Peek
○ Enqueue
○ Dequeue

8

6 7

5 4 2

987



6

Software Implementation

8

6 7

5 4 2

Peek

987

● Operations
○ Peek
○ Enqueue
○ Dequeue



7

Software Implementation

8

6 7

5 4 92

Enqueue(9)

987

● Operations
○ Peek
○ Enqueue
○ Dequeue

7

98

99



8

Dequeue

Software Implementation

9

6 8

5 4 72

● Operations
○ Peek
○ Enqueue
○ Dequeue

8

7



9

Hardware Priority Queue

● Support Operations
○ Replace[1], Enqueue, Dequeue

● Key Metrics
○ Performance
○ Resource Efficiency

9

5

4

3

2

6

Replace



10

Past Works and Motivation

● Register Tree [1]
● Register Array [1]
● Systolic Array [3]
● BRAM Tree [1]
● Hybrid Tree [1]
● Shift Register [2]
● …

Register Tree [1] Systolic Array [3]

Hybrid Tree [1]



11

Past Works and Motivation

● Register Tree [1]
● Register Array [1]
● Systolic Array [3]
● BRAM Tree [1]
● Hybrid Tree [1]
● Shift Register [2]
● …

● Outdated testing environment
● Lack of standardized and 

comprehensive comparisons



12

Past Works and Motivation

● Register Tree [1]
● Register Array [1]
● Systolic Array [3]
● BRAM Tree [1]
● Hybrid Tree [1]
● Shift Register [2]
● …

Which architecture is the best 
for my application?



13

HWPQ

● Reimplement the architectures on a baseline platform
○ Perform head to head comparison



14

HWPQ

● Reimplement the architectures on a baseline platform
○ Perform head to head comparison

● Architectures implemented in SystemVerilog
○ Parameterization



15

HWPQ

● Reimplement the architectures on a baseline platform
○ Perform head to head comparison

● Architectures implemented in SystemVerilog
○ Parameterization
○ Standard Interface



16

HWPQ

● Reimplement the architectures on a baseline platform
○ Perform head to head comparison

● Architectures implemented in SystemVerilog
○ Parameterization
○ Standard Interface
○ Full-Verification



17

Methodology 

● Artix UltraScale+ FPGA (XCAU25P) with AMD Vivado 2024.2

● Sweep through parameters to find the maximum achievable frequency

○ 16-bit data width, sweep queue size

○ Sweep a range of target frequencies



18

Methodology 

● Artix UltraScale+ FPGA (XCAU25P) with AMD Vivado 2024.2

● Sweep through parameters to find the maximum achievable frequency

○ 16-bit data width, sweep queue size

○ Sweep a range of target frequencies
● Record and calculate metrics for comparison

○ Max Archived Frequency for certain queue size

○ Performance (MOPS)

○ Resource Efficiency (Performance / Resource Utilization)
● Enqueue enabled/disabled for applicable architectures



19

Architectures
Enqueue Switch Enqueue Latency 

(cycle) *N means queue size
Replace/Dequeue Latency (cycle)

Register Array [1] Yes 1 1

Register Array (Pipelined) Yes 2 2

Register Tree [1] Yes Log N 1

Register Tree (Pipelined) Yes Log N + 1 2

Systolic Array [3] Yes 1 1

BRAM Tree [1] No N/A 8

BRAM Tree (Pipelined) No N/A 4

Hybrid Tree [1] W.I.P. 1 (expected) 1



20

Register Array
9 8 5 2

8 3 5 2

8 5 3 2

3 8 5 2replace(3)

1st compare swap

2nd compare swap



21

Architectures
Enqueue Switch Enqueue Latency 

(cycle) *N means queue size
Replace/Dequeue Latency (cycle)

Register Array [1] Yes 1 1

Register Array (Pipelined) Yes 2 2

Register Tree [1] Yes Log N 1

Register Tree (Pipelined) Yes Log N + 1 2

Systolic Array [3] Yes 1 1

BRAM Tree [1] No N/A 8

BRAM Tree (Pipelined) No N/A 4

Hybrid Tree [1] W.I.P. 1 (expected) 1



22

Register Tree / BRAM Tree

15

13 12 11

16

14

10

9 8 7 6 4 3 2 1

Replace(5)

5

16



23

Register Tree / BRAM Tree

5

13 12 11

15

14

10

9 8 7 6 4 3 2 1

Level 0

Level 1

Level 2

Level 3

1st compare swap

1st compare swap



24

Register Tree / BRAM Tree

13

5 12 11

15

14

10

9 8 7 6 4 3 2 1

Level 0

Level 1

Level 2

Level 3

2nd compare swap



25

Architectures
Enqueue Switch Enqueue Latency 

(cycle) *N means queue size
Replace/Dequeue Latency (cycle)

Register Array [1] Yes 1 1

Register Array (Pipelined) Yes 2 2

Register Tree [1] Yes Log N 1

Register Tree (Pipelined) Yes Log N + 1 2

Systolic Array [3] Yes 1 1

BRAM Tree [1] No N/A 8

BRAM Tree (Pipelined) No N/A 4

Hybrid Tree [1] W.I.P. 1 (expected) 1



26

Architectures
Enqueue Switch Enqueue Latency 

(cycle) *N means queue size
Replace/Dequeue Latency (cycle)

Register Array [1] Yes 1 1

Register Array (Pipelined) Yes 2 2

Register Tree [1] Yes Log N 1

Register Tree (Pipelined) Yes Log N + 1 2

Systolic Array [3] Yes 1 1

BRAM Tree [1] No N/A 8

BRAM Tree (Pipelined) No N/A 4

Hybrid Tree [1] W.I.P. 1 (expected) 1



27

Architectures
Enqueue Switch Enqueue Latency 

(cycle) *N means queue size
Replace/Dequeue Latency (cycle)

Register Array [1] Yes 1 1

Register Array (Pipelined) Yes 2 2

Register Tree [1] Yes Log N 1

Register Tree (Pipelined) Yes Log N + 1 2

Systolic Array [3] Yes 1 1

BRAM Tree [1] No N/A 8

BRAM Tree (Pipelined) No N/A 4

Hybrid Tree [1] W.I.P. 1 (expected) 1



28

Hybrid Tree

Register Array

BRAM Tree



29

Experimental 
Results





Pipelined, Enqueue Disabled

Non-Pipelined, Enqueue Enabled



Enqueue Enabled v.s. Enqueue Disabled











Best Overall



Queue size = 32





40

Takeaways

The “right” architecture always depends on the system 
requirements and applications’ unique constraints.

● Architecture selection may 
depend heavily on the top 
level design



41

Takeaways

The “right” architecture always depends on the system 
requirements and applications’ unique constraints.

● Small queue (<4 elements)
○ Register Tree

● Architecture selection may 
depend heavily on the top 
level design



42

Takeaways

The “right” architecture always depends on the system 
requirements and applications’ unique constraints.

● Small queue (<4 elements)
○ Register Tree

● Medium queue (>4, <256 elements)
○ Systolic Array

● Architecture selection may 
depend heavily on the top 
level design



43

Takeaways

The “right” architecture always depends on the system 
requirements and applications’ unique constraints.

● Small queue (<4 elements)
○ Register Tree

● Medium queue (>4, <256 elements)
○ Systolic Array

● Large queue (>256 elements)
○ Hybrid Tree

● Architecture selection may 
depend heavily on the top 
level design



44

GitHub Library

HWPQ Repository

● File Structure
○ RTL & Simulation
○ Vivado Synthesis Script
○ Python Analysis Script



45

Reference

● [1] Muhuan Huang, Kevin Lim, and Jason Cong. 2014. A scalable, high-performance customized priority queue. In 2014 24th 

International Conference on Field Programmable Logic and Applications (FPL). 1–4. https://doi.org/10.1109/FPL.2014.6927413

● [2] Sung-Whan Moon, J. Rexford, and K.G. Shin. 2000. Scalable hardware priority queue architectures for high-speed 

packet switches. IEEE Trans. Comput. 49, 11 (2000), 1215–1227. https://doi.org/10.1109/12.895938

● [3] Yuzhi Zhou, Xi Jin, Tianqi Wang, and Jose A. Boluda. 2020. FPGA Implementation of A Star Algorithm for Real -Time Path 

Planning. Int. J. Reconfig. Comput. 2020 (Jan. 2020), 11 pages. https://doi.org/10.1155/2020/889638



46

Q&A
HWPQ Repository


	Slide 1: Revisiting Hardware Priority Queue Architectures
	Slide 2: What is Priority Queue
	Slide 3: Priority Queue Applications
	Slide 4: Overview
	Slide 5: Software Implementation
	Slide 6: Software Implementation
	Slide 7: Software Implementation
	Slide 8: Software Implementation
	Slide 9: Hardware Priority Queue
	Slide 10: Past Works and Motivation
	Slide 11: Past Works and Motivation
	Slide 12: Past Works and Motivation
	Slide 13: HWPQ
	Slide 14: HWPQ
	Slide 15: HWPQ
	Slide 16: HWPQ
	Slide 17: Methodology 
	Slide 18: Methodology 
	Slide 19: Architectures
	Slide 20: Register Array
	Slide 21: Architectures
	Slide 22: Register Tree / BRAM Tree
	Slide 23: Register Tree / BRAM Tree
	Slide 24: Register Tree / BRAM Tree
	Slide 25: Architectures
	Slide 26: Architectures
	Slide 27: Architectures
	Slide 28: Hybrid Tree
	Slide 29: Experimental Results
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40: Takeaways
	Slide 41: Takeaways
	Slide 42: Takeaways
	Slide 43: Takeaways
	Slide 44: GitHub Library
	Slide 45: Reference
	Slide 46: Q&A

