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What is Priority Queue

Queue sorts elements based on priority values

● Elements sorted by priority first and insertion order second

9 5 4 3 2Max Priority enqueue

dequeue
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Priority Queue Applications

● Task scheduling in operating systems
○ CPU scheduling algorithms

● Graph pathfinding algorithms
○ Dijkstra’s shortest path
○ A* Pathfinding algorithm [3]

● Event management and simulation
○ Network Package Management [2]
○ Discrete Event Simulations

A* Pathfinding Algorithm
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Overview

● Priority Queue Overview
● Current Approaches and Limitations
● HWPQ Library Introduction
● Experimental Methodology
● Results and Insights
● Conclusion
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Software Implementation

● Operations
○ Peek
○ Enqueue
○ Dequeue
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Software Implementation
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Dequeue

Software Implementation
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Hardware Priority Queue

● Support Operations
○ Replace[1], Enqueue, Dequeue

● Key Metrics
○ Performance
○ Resource Efficiency
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Past Works and Motivation

● Register Tree [1]
● Register Array [1]
● Systolic Array [3]
● BRAM Tree [1]
● Hybrid Tree [1]
● Shift Register [2]
● …

Register Tree [1] Systolic Array [3]

Hybrid Tree [1]
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Past Works and Motivation

● Register Tree [1]
● Register Array [1]
● Systolic Array [3]
● BRAM Tree [1]
● Hybrid Tree [1]
● Shift Register [2]
● …

● Outdated testing environment
● Lack of standardized and 

comprehensive comparisons
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Past Works and Motivation

● Register Tree [1]
● Register Array [1]
● Systolic Array [3]
● BRAM Tree [1]
● Hybrid Tree [1]
● Shift Register [2]
● …

Which architecture is the best 
for my application?
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HWPQ

● Reimplement the architectures on a baseline platform
○ Perform head to head comparison
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HWPQ

● Reimplement the architectures on a baseline platform
○ Perform head to head comparison

● Architectures implemented in SystemVerilog
○ Parameterization
○ Standard Interface
○ Full-Verification
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Methodology 

● Artix UltraScale+ FPGA (XCAU25P) with AMD Vivado 2024.2

● Sweep through parameters to find the maximum achievable frequency

○ 16-bit data width, sweep queue size

○ Sweep a range of target frequencies
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Methodology 

● Artix UltraScale+ FPGA (XCAU25P) with AMD Vivado 2024.2

● Sweep through parameters to find the maximum achievable frequency

○ 16-bit data width, sweep queue size

○ Sweep a range of target frequencies
● Record and calculate metrics for comparison

○ Max Archived Frequency for certain queue size

○ Performance (MOPS)

○ Resource Efficiency (Performance / Resource Utilization)
● Enqueue enabled/disabled for applicable architectures
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Architectures
Enqueue Switch Enqueue Latency 

(cycle) *N means queue size
Replace/Dequeue Latency (cycle)

Register Array [1] Yes 1 1

Register Array (Pipelined) Yes 2 2

Register Tree [1] Yes Log N 1

Register Tree (Pipelined) Yes Log N + 1 2

Systolic Array [3] Yes 1 1

BRAM Tree [1] No N/A 8

BRAM Tree (Pipelined) No N/A 4

Hybrid Tree [1] W.I.P. 1 (expected) 1
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Register Tree / BRAM Tree
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Register Tree / BRAM Tree
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Hybrid Tree

Register Array

BRAM Tree
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Experimental 
Results





Pipelined, Enqueue Disabled

Non-Pipelined, Enqueue Enabled



Enqueue Enabled v.s. Enqueue Disabled











Best Overall



Queue size = 32
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Takeaways

The “right” architecture always depends on the system 
requirements and applications’ unique constraints.

● Architecture selection may 
depend heavily on the top 
level design
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Takeaways

The “right” architecture always depends on the system 
requirements and applications’ unique constraints.

● Small queue (<4 elements)
○ Register Tree

● Medium queue (>4, <256 elements)
○ Systolic Array

● Large queue (>256 elements)
○ Hybrid Tree

● Architecture selection may 
depend heavily on the top 
level design
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GitHub Library

HWPQ Repository

● File Structure
○ RTL & Simulation
○ Vivado Synthesis Script
○ Python Analysis Script
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Q&A
HWPQ Repository
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