An Open-Source DNN Acceleration Fabric with Flexible Inter-
Layer Pipelining Support

OSCAR 2025

& COLUMBIA UNIVERSITY CSE -\ bUTER SCIENCE
IN THE CITY OF NEW YORK eCU

State of the Art Hardware Accelerators for DL

Temporal Architecture
(SIMD/SIMT)

Memory Hierarchy

1

Register File

lALUI |ALIJ| |ALU| |ALU|

LTI
law] Jaw]| [aw] [aAw]
|| T I { Y |
aw | |[aw | [Aaw] [Aw]

J
lAaw]| [Aw]| [Aw] [ALu]

* Mostly in CPUs/GPUs
* Centralized Control logic

* No Communication across PEs

* Software Libraries (OpenBLAS/cuDNN) and
Computational Transformations
(FFT/Winograd/Strassen) to reduce
computational complexity

[Source: V. Sze et al., Proc. IEEE 17]

Spatial Architecture
(Dataflow Processing)

Memory Hierarchy

* Accelerators in ASIC/FPGA-based designs
» Dataflow processing + Global Buffer

* Distributed Control Logic and register-
file/scratchpad

From Monolithic Accelerators to Tiled
Architectures

Preemption
Module

| Systolic-Array

o
i | 3
=5 B
25 :
c @
=

Weight Buffer output
(WBUF) |
4"’

(GEMM Unit) .

Input

=] Register =
N
N,
N,
A
T = \\ Output
Accumulator Queue . Register
(ACCQ) pX

Off-Chip Memory]

Single-core architecture [1]

Systolic Array of PEs to exploit different types
of data reuse (WS - Google TPU style/OS - ShiDianNao style)

Challenges from fast evolving DL applications:
Bigger layer sizes -> scalability issues
Intra-model Heterogeneity -> resources underutilization

[Source: [1] Y. Choi , HPCA 20 [2] Y. Oh, HPCA ‘21 [3] H.

Memory Bandwidth NoC Bandwidth

(GBIs) (GBIs)
[11| — Y
ol|PE || PE Il PE ||
Q QS; Array | |Array | |Array | | 2 PE |PE PE |PE
) » 7 & |PE|PE|PE|PE
2Lz Pe || PE || PE @
o 3 | |Array| |Array| |Array g PE|PE|PE|PE
g @ \ PE|PE|PE|PE
zF PE PE PE PE Array
@ | |Array | |Array | |Array
kT ' J

On-chip Buffers (MB) Compute (TOP/s)

Homogeneous multi-core architecture [2]

To/From DRAM

Global Buffer

Global Interconnect (NoC)

Sub-ACC1

Sub-ACC2

Sub-ACC3

Heterogeneous dataflow accelerators (HDAS) [3]

Kwon, HPCA '21]

Tiled Architectures —
Coarse-Grained Intra-Layer Parallelism

Memory Bandwidth NoC Bandwidth Input Filter Output
(GB/s) (GBIs) Feature Maps Weight Feature Maps
o|| PE || PE | PE || .) +
o S | |Array| |Array | |Array| | PE|PE|PE|PE Input Channel (INPP) I
= o A & PE|PE|PE|PE Parallelism direction: C
% QCD:J PE PE PE—‘ (.% Partial sum reduction
o @ | |Array | |Array | |Array = PE|PE|PEPE
g @ PE|PE |PE |PE
|| PE || PE || PE ||
@ 7| Array || Array Array|| PE Aray / Output Channel (OUTP) i|=|| i|=||
y Parallelism direction: K
I 4+ Input duplicated . .
On-chip Buffers (MB) Compute (TOP/s)
Input Feature (IFMP) i|=|| i|=||
Each tile assigned to a distinct spatial or Parallelism direction: X, 'Y
Weight duplicated i|=|| i|=||

channel partition of the target DNN layer

Filter Input Channel | Input Fmap Partial
Different Pa rallelism schemes Partitioning Partitioning Partitioning | Output Sums
depending on the architecture INPP v v v
and layer parameters OUTP v
IFMP v

Intra-Layer Parallelism: The Memory Wall Problem

Fundamental Component of FC/CONV
layers: MAC (multiply and accumulate)

Memory Read MAC’ Memory Write

filter weight — ALU|
fmap activation : : _
partial sum ; — updated partial sum

* multiply-and-accumulate

Normalized Energy Cost
1x (Reference)
0.5-1.0kB
NoC: 200 - 1000 PEs
100 - 500 kB

DRAM [ALU |

Tiled architectures address this problem by maximizing the reuse of
data in low-level memories: low-cost but limited-capacity

[Source: V. Sze et al., Proc. IEEE 17]

Spatial Architectures

fetch data to run
a MAC here

Inter-Layer Pipelining

o I I Monolithic Systolic Array

sl |g| |&

4] 15 1S “h> coo oo
DRAM &—2—# DRAM-I -I! -I
ON-CHIp-¥— ¥ 5La§ g E g

Layer-Wise Execution Timeline
bl R I
‘
\ N
Yo po 8
e 1st tile Timeline
Segment Execution [1] The 17 te (T1)

[2]

[Source: [1] T. Glint. , DAC’24 [2] L. Mei, HPCA'23]

This Work

Problem: Existing work focuses on specialized tiled architectures
without inter-layer pipelining support or highly optimized inter-
layer pipelining solutions for monolithic accelerators

=> In this work, we propose an acceleration fabric that combines
coarse-grain intra-layer parallelism from tiled architectures with inter-
layer pipelining, using the open-source ESP platform

ESP Architecture

* RISC-V Processors

* Many-Accelerator
 Distributed Memory
* Multi-Plane NoC

-

The ESP architecture implements a

modular and heterogeneous,
giving processors and accelerators
similar weight in the SoC

o

distributed system, which is scalable,

/

.
S

multi-plane NoC

ESP Methodology

Accelerator Flow
* Simplified design
* Automated integration

SoC Flow

* Mix&match
floorplanning GUI

* Rapid FPGA prototyping

~

‘¢ Tensor

SO
Keras a
P
O PyTorch} his 4 ml Iﬂl]:' S

€ ONNX
HLS
Design
Flows
@ Vivado HLS =
> Stratus HLS 2
Catapult HLS B
cHIsSEeU)
RTL
System\Verilc)g‘ > DeSign
P Flows
Verilog
VHDL |

S
S ——

:ls accelerators

s R
e

third-party

>\accele_rat_°:-s-‘/<
w

third-party

RS
HW IP Library

s
M~

—. Linux apps
.2 bare-metal apps
device drivers

~ A
e

third-party

SW Library

SoC Configuration

-0x

SoC HW Acc ¥ Acc ¥ Memw
Integratiofy |\t e ¥) LU Y

Memw [/O0 wv Acc ¥

SoC Generation

FPGA ASIC
Prototyping Design

::] ::]
SoC = -
SW guild —JFPGA —JASIC

[Source: https://esp.cs.columbia.edu/]

https://esp.cs.columbia.edu/
https://esp.cs.columbia.edu/
https://esp.cs.columbia.edu/

ESP-DNN Acceleration Fabric

Acceleration fabric:

e 2 types of accelerator tiles:

 Compute Tile
* Reduction Tile

* 3 Data-transfer primitives:

* Direct Memory Access
* Point-to-Point
e Multicast

Example Dataflow: A<

C

MULTICAST

ESP-DNN Acceleration Fabric — Segment Mapping

* Segment = Sequence of adjacent layers executed concurrently by distinct groups of accelerator tiles.

* Segment Mapping onto the
ESP acceleration fabric:

1. #accs per layer
2. Intra-layer parallelsim per layer

3. Inter-layer communication
pattern

ey MULTICAST =p P2P DMA

—>Example: 2 alternative segment mappings
for a 2-layer segment of a CNN:

1.2 accs per layer

(a) 0-0 => MUTLICAST+DMA
(b) O-1 => P2P + DMA

(a) (b)

Experimental Evaluation

FPGA Prototype:

* 6x7 ESP instance

e Xilinx XCVU19P board

* Resources:

e 1 CPU tile for workload scheduling
e 110 tile for peripherals

* 4 memory tiles

* 36 accelerators tiles:

* 32 compute tiles

e 4 reduction tiles

@) CPU Tile

() VO Tile

() Compute Tile
() Reduction Tile
() Memory Tile

Experimental Evaluation

* Benchmark:
* 6 representative networks for vision/speech/language tasks

(ResNet-50, MobileNet, U-net, SqueezeNet,VGG16, MobileBERT)

* 3 Deployment modes:
* Baseline: all 32 compute and 4 memory tiles active + NO inter-layer pipelining

 EXP-1: # compute and memory tiles customized + NO inter-layer pipelining
e EXP-2: EXP-1 + inter-layer pipelining enabled.

Results:

Latency Energy EDP
172x 44l 1.81x

Latency (norm.)
EDP (norm.)

1 2 3 4 5 6 7
Bl Baseline B EXP1 B EXP2

1: ResNet-50 2: MobileNet-v2 3: UNet 4: SqueezeNet 5: VGG-16 6: MobileBERT 7: Average

Conclusions

* We implemented an acceleration fabric to flexibly combine coarse-grain intra-layer
parallelism and inter-layer pipelining using the Open Source ESP architecture.

* Results demonstrate consistent PPA improvement across the DNN models of our
benchmark suite, when multi-layer segments are enabled.

* Future work: extend the fabric to support multi-model execution with multiple

segments sharing the on-chip compute resources and off-chip memory bandwidth:
e Optimization framework to explore the scheduling/mapping problem.
* Spatial independence assumption (guaranteed by NoC + tiled architecture)

Tomorrow: Tutorial on Agile Design of
Secure and Resilient Al-Centric Systems

* Full Day: 8AM —
3PM

* Location: 121-B1F-
113 (Building 121,
Floor B1F, Room
113)

* Co-organized by
IBM Research and
Columbia University

8:00 - 8:30 AM

8:30 - 9:15 AM

9:15-10:00 AM

10:00 - 10:30 AM

10:30 - 11:30 AM

11:30 - 12:00 PM

12:00 - 1:00 PM

1:00 - 1:30 PM

1:30 - 2:00 PM

2:00 - 3:00 PM

3:00 PM

Tutorial Introduction
Pradip Bose (IBM Research)

ESP Mini-Tutorial
Luca Carloni (Columbia University)

lllustrative Use of ESP to Design Efficient CAV SoCs (EPOCHS) and Beyond
Joseph Zuckerman (Columbia University) & Karthik Swaminathan (IBM Research)

Coffee Break

Introduction to FHE Algorithms and Architectures
Charanijit Jutla (IBM Research)

Fourier Transform Accelerators Using Integrated Photonics for Fully Homomorphic Encryption
Imon Kundu (Optalysys)

Lunch Break

Security and Resilience Challenges in Al-Centric Systems
Naorin Hossain, Karthik Swaminathan, Pradip Bose (IBM Research)

IBM's SARA SoC/SiP Project: Application-Driven High Level View
Pradip Bose et al. (IBM Research)

HELayers Driven Software Stack for Al/FHE Appliances
Eyal Kushnir et al. (IBM Israel Research Laboratory, Haifa)

End of SARA Tutorial (see you next year!)

Thank you from the team!

Y
sio >

An Open-Source DNN Acceleration Fabric with Flexible
Inter-Layer Pipelining Support

Gabriele Tombesi, Joseph Zuckerman, Je Yang, William Baisi,
Kevin Lee, Davide Giri, and Luca P. Carloni

& COLUMBIA UNIVERSITY CSE -\ bUTER SCIENCE
IN THE CITY OF NEW YORK eCU

https://sld.cs.columbia.edu/
https://www.esp.cs.columbia.edu/
https://github.com/sld-columbia/esp
https://twitter.com/ColumbiaSld
https://www.youtube.com/c/ESP-platform

	Slide 1: An Open-Source DNN Acceleration Fabric with Flexible Inter-Layer Pipelining Support
	Slide 2: State of the Art Hardware Accelerators for DL
	Slide 3: From Monolithic Accelerators to Tiled Architectures
	Slide 4: Tiled Architectures – Coarse-Grained Intra-Layer Parallelism
	Slide 5: Intra-Layer Parallelism: The Memory Wall Problem
	Slide 6: Inter-Layer Pipelining
	Slide 7: This Work
	Slide 8: ESP Architecture
	Slide 9: ESP Methodology
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Conclusions
	Slide 15: Tomorrow: Tutorial on Agile Design of Secure and Resilient AI-Centric Systems
	Slide 16: An Open-Source DNN Acceleration Fabric with Flexible Inter-Layer Pipelining Support

