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State of the Art Hardware Accelerators for DL
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* Mostly in CPUs/GPUs
* Centralized Control logic

* No Communication across PEs

* Software Libraries (OpenBLAS/cuDNN) and
Computational Transformations
(FFT/Winograd/Strassen) to reduce
computational complexity

[ Source: V. Sze et al., Proc. IEEE 17 ]

Spatial Architecture
(Dataflow Processing)

Memory Hierarchy

* Accelerators in ASIC/FPGA-based designs
» Dataflow processing + Global Buffer

* Distributed Control Logic and register-
file/scratchpad



From Monolithic Accelerators to Tiled
Architectures
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Single-core architecture [1]

Systolic Array of PEs to exploit different types
of data reuse (WS - Google TPU style/OS - ShiDianNao style)

Challenges from fast evolving DL applications:
Bigger layer sizes -> scalability issues
Intra-model Heterogeneity -> resources underutilization

[ Source: [1] Y. Choi , HPCA 20 [2] Y. Oh, HPCA ‘21 [3] H.
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Heterogeneous dataflow accelerators (HDAS) [3]
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Tiled Architectures —
Coarse-Grained Intra-Layer Parallelism
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Intra-Layer Parallelism: The Memory Wall Problem

Fundamental Component of FC/CONV
layers: MAC (multiply and accumulate)

Memory Read MAC’ Memory Write

filter weight — ALU|
fmap activation : : _
partial sum ; — updated partial sum

* multiply-and-accumulate

Normalized Energy Cost
1x (Reference)
0.5-1.0kB
NoC: 200 - 1000 PEs
100 - 500 kB

DRAM [ALU |

Tiled architectures address this problem by maximizing the reuse of
data in low-level memories: low-cost but limited-capacity

[ Source: V. Sze et al., Proc. IEEE 17 ]

Spatial Architectures

fetch data to run
a MAC here



Inter-Layer Pipelining
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This Work

Problem: Existing work focuses on specialized tiled architectures
without inter-layer pipelining support or highly optimized inter-
layer pipelining solutions for monolithic accelerators

=> In this work, we propose an acceleration fabric that combines
coarse-grain intra-layer parallelism from tiled architectures with inter-
layer pipelining, using the open-source ESP platform



ESP Architecture

* RISC-V Processors

* Many-Accelerator
 Distributed Memory
* Multi-Plane NoC

-

The ESP architecture implements a

modular and heterogeneous,
giving processors and accelerators
similar weight in the SoC

o

distributed system, which is scalable,

/
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ESP Methodology

Accelerator Flow
* Simplified design
* Automated integration

SoC Flow

* Mix&match
floorplanning GUI

* Rapid FPGA prototyping
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ESP-DNN Acceleration Fabric

Acceleration fabric:

e 2 types of accelerator tiles:

 Compute Tile
* Reduction Tile

* 3 Data-transfer primitives:

* Direct Memory Access
* Point-to-Point
e Multicast

Example Dataflow: A<

C

MULTICAST




ESP-DNN Acceleration Fabric — Segment Mapping

* Segment = Sequence of adjacent layers executed concurrently by distinct groups of accelerator tiles.

* Segment Mapping onto the
ESP acceleration fabric:

1. #accs per layer
2. Intra-layer parallelsim per layer

3. Inter-layer communication
pattern

ey MULTICAST  =p P2P DMA

—>Example: 2 alternative segment mappings
for a 2-layer segment of a CNN:

1.2 accs per layer

(a) 0-0 => MUTLICAST+DMA
(b) O-1 => P2P + DMA

(a) (b)



Experimental Evaluation

FPGA Prototype:

* 6x7 ESP instance

e Xilinx XCVU19P board

* Resources:

e 1 CPU tile for workload scheduling
e 110 tile for peripherals

* 4 memory tiles

* 36 accelerators tiles:

* 32 compute tiles

e 4 reduction tiles

@) CPU Tile

() VO Tile

() Compute Tile
() Reduction Tile
() Memory Tile




Experimental Evaluation

* Benchmark:
* 6 representative networks for vision/speech/language tasks

(ResNet-50, MobileNet, U-net, SqueezeNet,VGG16, MobileBERT)

* 3 Deployment modes:
* Baseline: all 32 compute and 4 memory tiles active + NO inter-layer pipelining

 EXP-1: # compute and memory tiles customized + NO inter-layer pipelining
e EXP-2: EXP-1 + inter-layer pipelining enabled.

Results:

Latency Energy EDP
172x 44l 1.81x

Latency (norm.)
EDP (norm.)

1 2 3 4 5 6 7
Bl Baseline B EXP1 B EXP2

1: ResNet-50 2: MobileNet-v2 3: UNet 4: SqueezeNet 5: VGG-16 6: MobileBERT 7: Average



Conclusions

* We implemented an acceleration fabric to flexibly combine coarse-grain intra-layer
parallelism and inter-layer pipelining using the Open Source ESP architecture.

* Results demonstrate consistent PPA improvement across the DNN models of our
benchmark suite, when multi-layer segments are enabled.

* Future work: extend the fabric to support multi-model execution with multiple

segments sharing the on-chip compute resources and off-chip memory bandwidth:
e Optimization framework to explore the scheduling/mapping problem.
* Spatial independence assumption (guaranteed by NoC + tiled architecture)



Tomorrow: Tutorial on Agile Design of
Secure and Resilient Al-Centric Systems

* Full Day: 8AM —
3PM

* Location: 121-B1F-
113 (Building 121,
Floor B1F, Room
113)

* Co-organized by
IBM Research and
Columbia University

8:00 - 8:30 AM

8:30 - 9:15 AM

9:15-10:00 AM

10:00 - 10:30 AM

10:30 - 11:30 AM

11:30 - 12:00 PM

12:00 - 1:00 PM

1:00 - 1:30 PM

1:30 - 2:00 PM

2:00 - 3:00 PM

3:00 PM

Tutorial Introduction
Pradip Bose (IBM Research)

ESP Mini-Tutorial
Luca Carloni (Columbia University)

lllustrative Use of ESP to Design Efficient CAV SoCs (EPOCHS) and Beyond
Joseph Zuckerman (Columbia University) & Karthik Swaminathan (IBM Research)

Coffee Break

Introduction to FHE Algorithms and Architectures
Charanijit Jutla (IBM Research)

Fourier Transform Accelerators Using Integrated Photonics for Fully Homomorphic Encryption
Imon Kundu (Optalysys)

Lunch Break

Security and Resilience Challenges in Al-Centric Systems
Naorin Hossain, Karthik Swaminathan, Pradip Bose (IBM Research)

IBM's SARA SoC/SiP Project: Application-Driven High Level View
Pradip Bose et al. (IBM Research)

HELayers Driven Software Stack for Al/FHE Appliances
Eyal Kushnir et al. (IBM Israel Research Laboratory, Haifa)

End of SARA Tutorial (see you next year!)
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