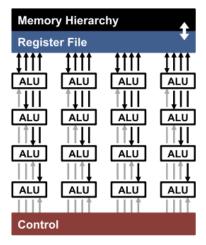
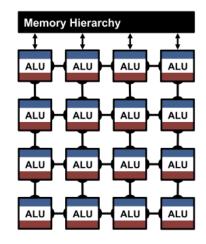
An Open-Source DNN Acceleration Fabric with Flexible Inter-Layer Pipelining Support

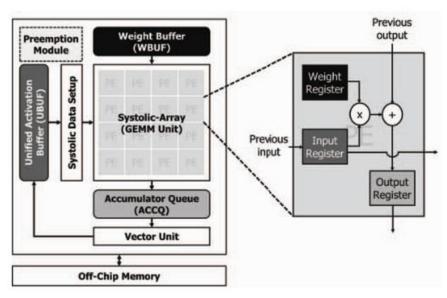
Gabriele Tombesi, Joseph Zuckerman, Je Yang, William Baisi, Kevin Lee, Davide Giri, and Luca P. Carloni



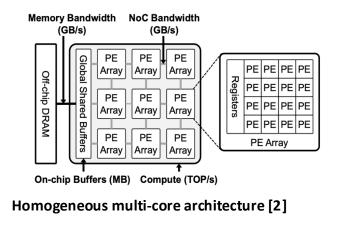
OSCAR 2025

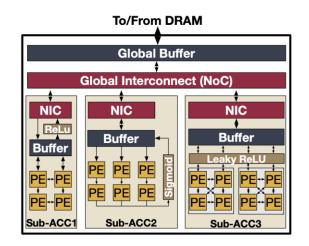

State of the Art Hardware Accelerators for DL

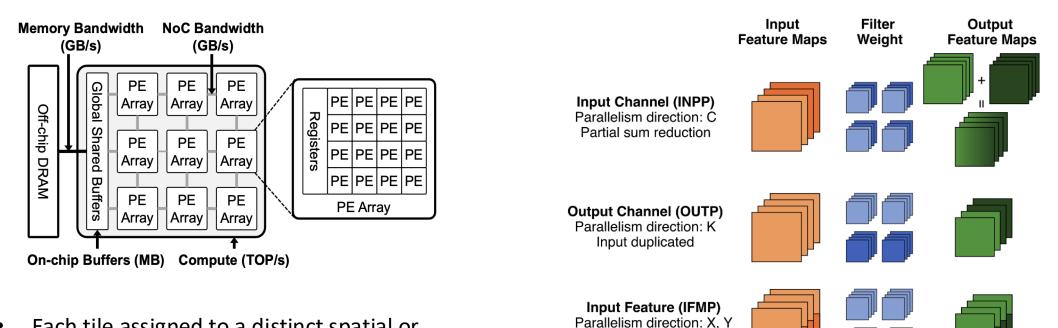
Temporal Architecture (SIMD/SIMT)


- Mostly in CPUs/GPUs
- Centralized Control logic
- No Communication across PEs
- Software Libraries (OpenBLAS/cuDNN) and Computational Transformations (FFT/Winograd/Strassen) to reduce computational complexity

Spatial Architecture (Dataflow Processing)


- Accelerators in ASIC/FPGA-based designs
- Dataflow processing + Global Buffer
- Distributed Control Logic and registerfile/scratchpad

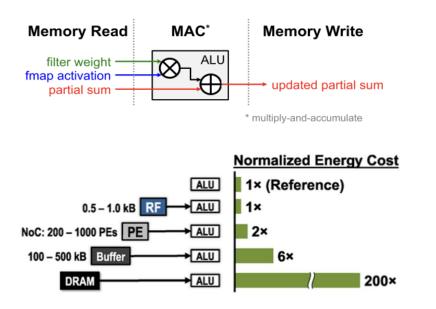

From Monolithic Accelerators to Tiled Architectures


- Systolic Array of PEs to exploit different types of *data reuse* (WS - Google TPU style/OS - ShiDianNao style)
- Challenges from fast evolving DL applications:
 - Bigger layer sizes -> scalability issues
 - Intra-model Heterogeneity -> resources underutilization

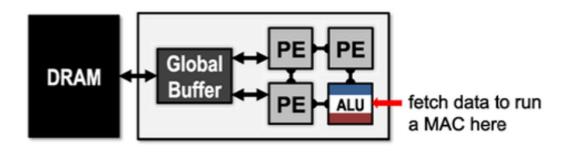
Heterogeneous dataflow accelerators (HDAs) [3]

Tiled Architectures – Coarse-Grained Intra-Layer Parallelism

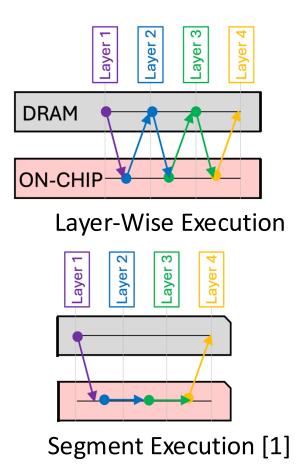
Weight duplicated


- Each tile assigned to a distinct spatial or channel partition of the target DNN layer
- Different **parallelism schemes** depending on the architecture and layer parameters

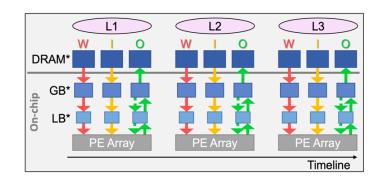
	Filter	Input Channel	Input Fmap	Partial
	Partitioning	Partitioning	Partitioning	Output Sums
INPP	 ✓ 	\checkmark		\checkmark
OUTP	\checkmark			
IFMP			\checkmark	

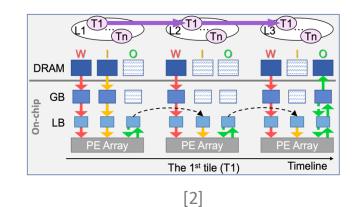

Intra-Layer Parallelism: The Memory Wall Problem

Fundamental Component of FC/CONV layers: MAC (multiply and accumulate)


Tiled architectures address this problem by **maximizing the reuse of** data in low-level memories: **low-cost** but **limited-capacity**

Spatial Architectures



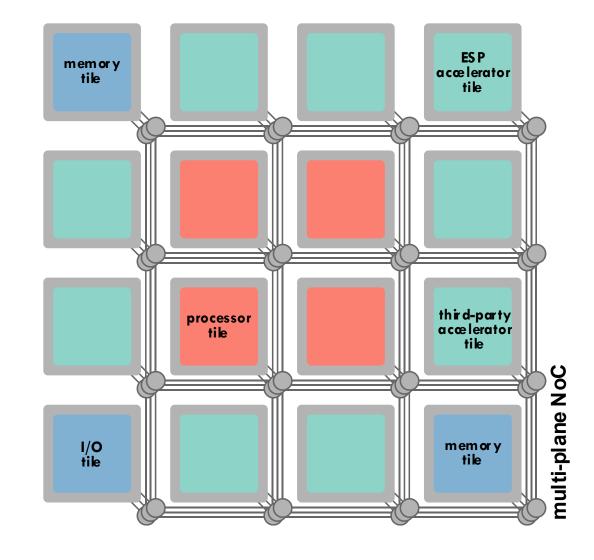

[Source: V. Sze et al., Proc. IEEE '17]

Inter-Layer Pipelining

Monolithic Systolic Array

[Source: [1] T. Glint. , DAC'24 [2] L. Mei, HPCA'23]

This Work

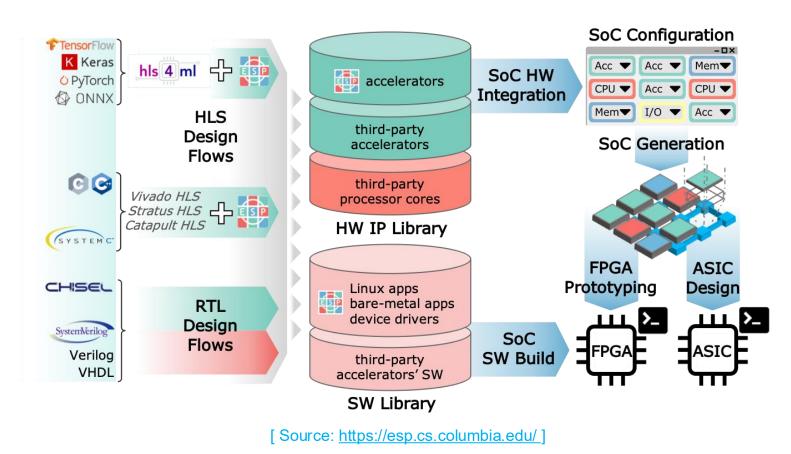

Problem: Existing work focuses on specialized tiled architectures without inter-layer pipelining support *or* highly optimized inter-layer pipelining solutions for monolithic accelerators

=> In this work, we propose an acceleration fabric that combines coarse-grain intra-layer parallelism from tiled architectures with interlayer pipelining, using the open-source ESP platform

ESP Architecture

- RISC-V Processors
- Many-Accelerator
- Distributed Memory
- Multi-Plane NoC

The ESP architecture implements a distributed system, which is scalable, modular and heterogeneous, giving processors and accelerators similar weight in the SoC

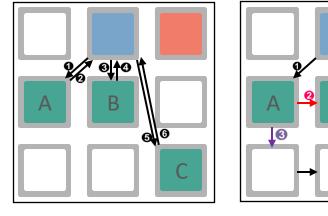

ESP Methodology

Accelerator Flow

- Simplified design
- Automated integration

SoC Flow

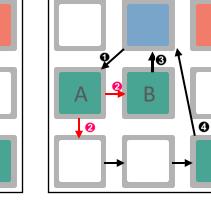
- Mix&match floorplanning GUI
- Rapid FPGA prototyping



ESP-DNN Acceleration Fabric

Acceleration fabric:

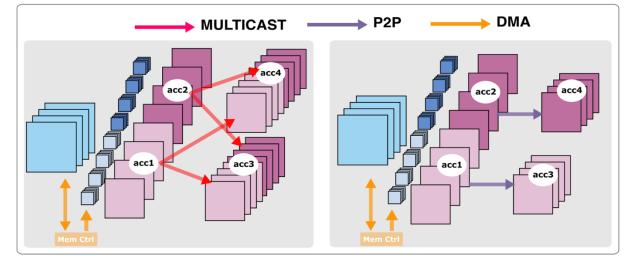
- 2 types of accelerator tiles:
 - Compute Tile
 - Reduction Tile
- 3 Data-transfer primitives:
 - Direct Memory Access
 - Point-to-Point
 - Multicast



DMA

10

6

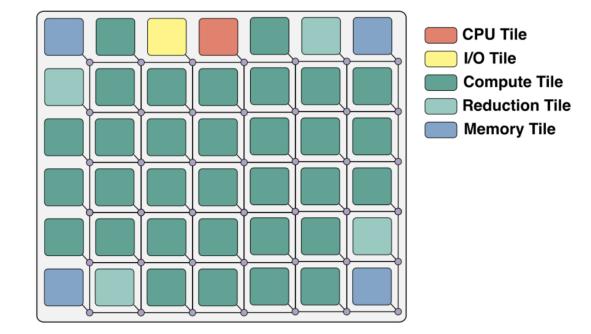

MULTICAST

ESP-DNN Acceleration Fabric – Segment Mapping

(a)

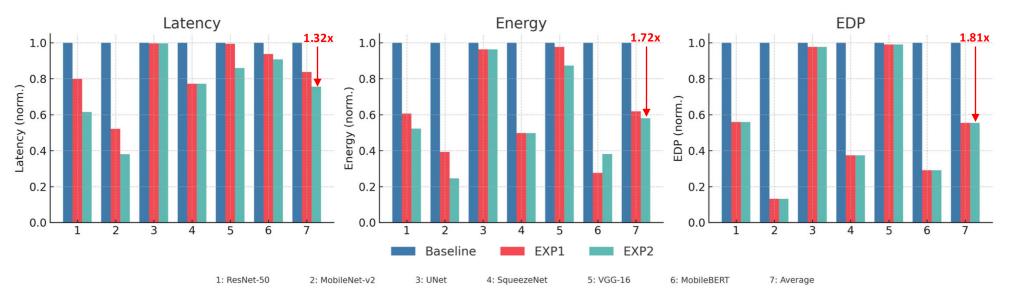
- **Segment** = Sequence of adjacent layers executed concurrently by distinct groups of accelerator tiles.
- Segment Mapping onto the ESP acceleration fabric:
 - 1. #accs per layer
 - 2. Intra-layer parallelsim per layer
 - Inter-layer communication pattern
 - ⇒Example: 2 alternative segment mappings for a **2-layer segment of a CNN**:
 - 1.2 accs per layer

(a) O-O => MUTLICAST+DMA (b) O-I => P2P + DMA



(b)

Experimental Evaluation


FPGA Prototype:

- 6x7 ESP instance
- Xilinx XCVU19P board
- Resources:
 - 1 CPU tile for workload scheduling
 - 1 IO tile for peripherals
 - 4 memory tiles
 - 36 accelerators tiles:
 - 32 compute tiles
 - 4 reduction tiles

Experimental Evaluation

- Benchmark:
 - 6 representative networks for vision/speech/language tasks (ResNet-50, MobileNet, U-net, SqueezeNet, VGG16, MobileBERT)
- 3 Deployment modes:
 - **Baseline:** all 32 compute and 4 memory tiles active + NO inter-layer pipelining
 - **EXP-1:** # compute and memory tiles customized + NO inter-layer pipelining
 - **EXP-2:** EXP-1 + inter-layer pipelining enabled.

Results:

Conclusions

• We implemented an acceleration fabric to flexibly combine **coarse-grain intra-layer parallelism** and **inter-layer pipelining** using the Open Source ESP architecture.

- Results demonstrate consistent **PPA improvement** across the DNN models of our benchmark suite, when multi-layer segments are enabled.
- **Future work**: extend the fabric to support **multi-model execution** with multiple segments sharing the on-chip compute resources and off-chip memory bandwidth:
 - Optimization framework to explore the scheduling/mapping problem.
 - Spatial independence assumption (guaranteed by NoC + tiled architecture)

Tomorrow: Tutorial on Agile Design of Secure and Resilient Al-Centric Systems

- Full Day: 8AM 3PM
- Location: 121-B1F-113 (Building 121, Floor B1F, Room 113)
- Co-organized by IBM Research and Columbia University

8:00 - 8:30 AM	Tutorial Introduction Pradip Bose (IBM Research)	
8:30 - 9:15 AM	ESP Mini-Tutorial Luca Carloni (Columbia University)	
9:15 - 10:00 AM	Illustrative Use of ESP to Design Efficient CAV SoCs (EPOCHS) and Beyond Joseph Zuckerman (Columbia University) & Karthik Swaminathan (IBM Research)	
10:00 - 10:30 AM	Coffee Break	
10:30 - 11:30 AM	Introduction to FHE Algorithms and Architectures Charanjit Jutla (IBM Research)	
11:30 - 12:00 PM	Fourier Transform Accelerators Using Integrated Photonics for Fully Homomorphic Encryption Imon Kundu (Optalysys)	
12:00 - 1:00 PM	Lunch Break	
1:00 - 1:30 PM	Security and Resilience Challenges in AI-Centric Systems Naorin Hossain, Karthik Swaminathan, Pradip Bose (IBM Research)	
1:30 - 2:00 PM	IBM's SARA SoC/SiP Project: Application-Driven High Level View Pradip Bose <i>et al.</i> (IBM Research)	
2:00 - 3:00 PM	HELayers Driven Software Stack for AI/FHE Appliances Eyal Kushnir <i>et al.</i> (IBM Israel Research Laboratory, Haifa)	
3:00 PM	End of SARA Tutorial (see you next year!)	

Thank you from the ESP team!

esp.cs.columbia.edu

/FSP-platform

An Open-Source DNN Acceleration Fabric with Flexible Inter-Layer Pipelining Support

Gabriele Tombesi, Joseph Zuckerman, Je Yang, William Baisi, Kevin Lee, Davide Giri, and Luca P. Carloni

OSCAR 2025

