
AutoSVA: Democratizing Formal
Verification of RTL Module

Interactions

Marcelo Orenes-Vera, Aninda Manocha,
David Wentzlaff and Margaret Martonosi

Presented by: Marcelo Orenes-Vera
movera@princeton.edu

Verifying Module Interactions is Challenging
• Modern heterogeneous SoC design is complex and time-consuming

1. Multiple modules developed in different contexts
2. These modules interact with each other
3. System can hang if one module never replies

2

TI OMAP4 Heterogeneous SoC
Image Credit: Texas Instruments

Verifying Module Interactions is Challenging
• Modern heterogeneous SoC design is complex and time-consuming

1. Multiple modules developed in different contexts
2. These modules interact with each other
3. System can hang if one module never replies

• SystemVerilog Assertions (SVA) is a language to describe properties
about a hardware module. These properties can be:
• Safety properties: nothing bad will happen, e.g. mem request with invalid addr.
• Liveness properties: something good will eventually happen, e.g. get a response
• These can be asserted (check always), covered (observed at least once) or assumed

3

Image Credit: Texas Instruments
TI OMAP4 Heterogeneous SoC

reg [TRANS_WIDTH-1:0] lsu_load_transid_sampled;
wire lsu_req_hsk = lsu_req_val && lsu_req_rdy;
wire lsu_load_set = lsu_req_hsk && lsu_req_transid == symb_lsu_transid;
wire lsu_load_response = lsu_res_val && lsu_res_transid ==symb_lsu_transid
always_ff @(posedge clk_i or negedge rst_ni) begin
 if(!rst_ni) //counting transaction
 lsu_load_sampled <= '0;
 end else if (lsu_load_set || lsu_load_response)
 lsu_load_sampled <= lsu_load_sampled + lsu_load_set - lsu_load_response
end
co__lsu_request_happens: cover property (lsu_load_sampled > 0);
// Assume that a transaction is stable until acknowledged
am__lsu_load_stability: assume property (lsu_req_val && !lsu_req_rdy |=>
 $stable({lsu_req_stable}));
// Assert that if a valid transaction then eventually is ack'ed or dropped
as__lsu_load_hsk_or_drop: assert property (lsu_req_val |->
 s_eventually(!lsu_req_val || lsu_req_rdy));
// Assert that every request has response, and every reponse had a request
as__lsu_load_eventual_response: assert property (lsu_load_set |->
 s_eventually(lsu_load_response)));
as__lsu_load_had_a_request: assert property (lsu_load_response |->
 lsu_load_set || lsu_load_sampled > 0);

reg [TRANS_WIDTH-1:0] lsu_load_transid_sampled;
wire lsu_req_hsk = lsu_req_val && lsu_req_rdy;
wire lsu_load_set = lsu_req_hsk && lsu_req_transid == symb_lsu_transid;
wire lsu_load_response = lsu_res_val && lsu_res_transid ==symb_lsu_transid
always_ff @(posedge clk_i or negedge rst_ni) begin
 if(!rst_ni) //counting transaction
 lsu_load_sampled <= '0;
 end else if (lsu_load_set || lsu_load_response)
 lsu_load_sampled <= lsu_load_sampled + lsu_load_set - lsu_load_response
end
co__lsu_request_happens: cover property (lsu_load_sampled > 0);
// Assume that a transaction is stable until acknowledged
am__lsu_load_stability: assume property (lsu_req_val && !lsu_req_rdy |=>
 $stable({lsu_req_stable}));
// Assert that if a valid transaction then eventually is ack'ed or dropped
as__lsu_load_hsk_or_drop: assert property (lsu_req_val |->
 s_eventually(!lsu_req_val || lsu_req_rdy));
// Assert that every request has response, and every reponse had a request
as__lsu_load_eventual_response: assert property (lsu_load_set |->
 s_eventually(lsu_load_response)));
as__lsu_load_had_a_request: assert property (lsu_load_response |->
 lsu_load_set || lsu_load_sampled > 0);

E.g.:

Verifying Module Interactions is Challenging
• Modern heterogeneous SoC design is complex and time-

consuming
1. Multiple modules developed in different contexts
2. These modules interact with each other
3. System can hang if one module never replies

• SystemVerilog Assertions (SVA) is a language to describe
properties about a hardware module. These properties can be:
• Safety properties: nothing bad will happen, e.g. mem request with invalid

addr.
• Liveness properties: something good will eventually happen, e.g. get a

response

4

Image Credit: Texas Instruments
TI OMAP4 Heterogeneous SoC

reg [TRANS_WIDTH-1:0] lsu_load_transid_sampled;
wire lsu_req_hsk = lsu_req_val && lsu_req_rdy;
wire lsu_load_set = lsu_req_hsk && lsu_req_transid == symb_lsu_transid;
wire lsu_load_response = lsu_res_val && lsu_res_transid ==symb_lsu_transid
always_ff @(posedge clk_i or negedge rst_ni) begin
 if(!rst_ni) //counting transaction
 lsu_load_sampled <= '0;
 end else if (lsu_load_set || lsu_load_response)
 lsu_load_sampled <= lsu_load_sampled + lsu_load_set - lsu_load_response
end
co__lsu_request_happens: cover property (lsu_load_sampled > 0);
// Assume that a transaction is stable until acknowledged
am__lsu_load_stability: assume property (lsu_req_val && !lsu_req_rdy |=>
 $stable({lsu_req_stable}));
// Assert that if a valid transaction then eventually is ack'ed or dropped
as__lsu_load_hsk_or_drop: assert property (lsu_req_val |->
 s_eventually(!lsu_req_val || lsu_req_rdy));
// Assert that every request has response, and every reponse had a request
as__lsu_load_eventual_response: assert property (lsu_load_set |->
 s_eventually(lsu_load_response)));
as__lsu_load_had_a_request: assert property (lsu_load_response |->
 lsu_load_set || lsu_load_sampled > 0);

Properties:
Assert,
Assumes
and Covers

Hand-writing RTL properties in SVA is
tedious and error-prone. However,

properties are very important to check, as
the forward progress of the system depends

on all modules interacting as expected!

Need exhaustive testing of properties
• While properties can be checked during simulation-based verification, i.e. running

tests, there is no confidence that the SVA properties hold outside the tested scenarios.
• Very long traces on properties failing on system-level simulation
• Often only safety properties supported, and not liveness.

5

Need exhaustive testing of properties
• While properties can be checked during simulation-based verification, i.e. running

tests, there is no confidence that the SVA properties hold outside the tested scenarios.
• Very long traces on properties failing on system-level simulation
• Often only safety properties supported, and not liveness.

• Properties can be checked thoroughly using Formal Property Verification (FPV) tools,
since they check every possible combination in the space state. FPV is more suitable
for verifying liveness properties and forward progress. But…

1. FPV has a steep learning curve
2. FPV requires both significant knowledge and engineering effort

• Need to write many properties and additional modeling code in Verilog

We need an automated method!
6

Need exhaustive testing of properties
• While properties can be checked during simulation-based verification, i.e. running

tests, there is no confidence that the SVA properties hold outside the tested scenarios.
• Very long traces on properties failing on system-level simulation
• Often only safety properties supported, and not liveness.

• Properties can be checked thoroughly using Formal Property Verification (FPV) tools,
since they check every possible combination in the space state. FPV is more suitable
for verifying liveness properties and forward progress. But…

1. FPV has a steep learning curve
2. FPV requires both significant knowledge and engineering effort

• Need to write many properties and additional modeling code in Verilog

We need an automated method!
7

Such methodology would allow
hardware designers to verify the

modules they are developing

The AutoSVA Framework
• AutoSVA: a framework for automatic generation of FPV testbenches to

verify well-formed transactions and forward progress of RTL modules
• AutoSVA introduces a transaction abstraction that enables automated

reasoning about liveness and safety properties of module interactions
thus allowing hardware designers to efficiently formally verify their RTL
by simply writing annotations at module interfaces

8

AutoSVA to Verify RTL Module Interactions

9

Load-Store Unit (LSU) Load interface
Need to verify that RTL
modules interact as
expected!

/*AUTOSVA
lsu_load: lsu_req -in> lsu_res
lsu_req_val = lsu_valid_i && fu_data_i.fu == LOAD
lsu_req_rdy = lsu_ready_o
[TRANS_ID_BITS-1:0] lsu_req_transid = fu_data_i.trans_id
[CTRL_BITS-1:0] lsu_req_stable = {fu_data_i.trans_id,fu_data_i.fu}
lsu_res_val = load_valid_o
[TRANS_ID_BITS-1:0] lsu_res_transid = load_trans_id_o
*/

AutoSVA Offers a Simple but Rich Language
• Transaction involves two events with an implication relation

• e.g., request->response, or any action->effect
• Transactions are named and can have various attributes

• e.g., valid, ready, trans_id, data, etc.
• Attributes can be defined explicitly in the RTL (by writing annotations, as shown in

the example), or implicitly (no annotation, when signals match our name convention)

10

AutoSVA Explicit Annotations to the LSU Load interface

/*AUTOSVA
lsu_load: lsu_req -in> lsu_res
lsu_req_val = lsu_valid_i && fu_data_i.fu == LOAD
lsu_req_rdy = lsu_ready_o
[TRANS_ID_BITS-1:0] lsu_req_transid = fu_data_i.trans_id
[CTRL_BITS-1:0] lsu_req_stable = {fu_data_i.trans_id,fu_data_i.fu}
lsu_res_val = load_valid_o
[TRANS_ID_BITS-1:0] lsu_res_transid = load_trans_id_o
*/

AutoSVA Offers a Simple but Rich Language
• Transactions can be incoming and outgoing

• Incoming (in): An external module sends a request to the Design-Under-Test (DUT),
so that AutoSVA properties will assert that there is an eventual effect or response,
and that this follows certain conditions

• Outgoing (out): The DUT sends a request to an external module. Since the
behavior of this is outside the scope of the DUT, we assume that this transaction
behaves as expected (based on the annotations)

11

AutoSVA Explicit Annotations to the LSU Load interface (incoming)

Mapping Transactions to Properties

AutoSVA generates both the necessary scaffolding
code and design properties based on the attributes
defined in the interface annotations

12

reg [TRANS_WIDTH-1:0] lsu_load_transid_sampled;
wire lsu_req_hsk = lsu_req_val && lsu_req_rdy;
wire lsu_load_set = lsu_req_hsk && lsu_req_transid == symb_lsu_transid;
wire lsu_load_response = lsu_res_val && lsu_res_transid ==symb_lsu_transid
always_ff @(posedge clk_i or negedge rst_ni) begin
 if(!rst_ni) //counting transaction
 lsu_load_sampled <= '0;
 end else if (lsu_load_set || lsu_load_response)
 lsu_load_sampled <= lsu_load_sampled + lsu_load_set - lsu_load_response
end
co__lsu_request_happens: cover property (lsu_load_sampled > 0);
// Assume that a transaction is stable until acknowledged
am__lsu_load_stability: assume property (lsu_req_val && !lsu_req_rdy |=>
 $stable({lsu_req_stable}));
// Assert that if a valid transaction then eventually is ack'ed or dropped
as__lsu_load_hsk_or_drop: assert property (lsu_req_val |->
 s_eventually(!lsu_req_val || lsu_req_rdy));
// Assert that every request has response, and every reponse had a request
as__lsu_load_eventual_response: assert property (lsu_load_set |->
 s_eventually(lsu_load_response)));
as__lsu_load_had_a_request: assert property (lsu_load_response |->
 lsu_load_set || lsu_load_sampled > 0);

reg [TRANS_WIDTH-1:0] lsu_load_transid_sampled;
wire lsu_req_hsk = lsu_req_val && lsu_req_rdy;
wire lsu_load_set = lsu_req_hsk && lsu_req_transid == symb_lsu_transid;
wire lsu_load_response = lsu_res_val && lsu_res_transid ==symb_lsu_transid
always_ff @(posedge clk_i or negedge rst_ni) begin
 if(!rst_ni) //counting transaction
 lsu_load_sampled <= '0;
 end else if (lsu_load_set || lsu_load_response)
 lsu_load_sampled <= lsu_load_sampled + lsu_load_set - lsu_load_response
end
co__lsu_request_happens: cover property (lsu_load_sampled > 0);
// Assume that a transaction is stable until acknowledged
am__lsu_load_stability: assume property (lsu_req_val && !lsu_req_rdy |=>
 $stable({lsu_req_stable}));
// Assert that if a valid transaction then eventually is ack'ed or dropped
as__lsu_load_hsk_or_drop: assert property (lsu_req_val |->
 s_eventually(!lsu_req_val || lsu_req_rdy));
// Assert that every request has response, and every reponse had a request
as__lsu_load_eventual_response: assert property (lsu_load_set |->
 s_eventually(lsu_load_response)));
as__lsu_load_had_a_request: assert property (lsu_load_response |->
 lsu_load_set || lsu_load_sampled > 0);

Fragment of the code and properties generated by AutoSVA

The AutoSVA Framework

Parse
Input/Output

Signals

Bui ld
Trans.
Object

Parse
Annotations

Par ser

Generate Outgoing
Trans. Proper ties

Parse
Global

Parameter s

Pr oper ty Gener ator

Generate Incoming
Trans. Proper ties

Generate
Symbolic
Var iables

Generate
Handshake

Signals

Generate Auxi l iar y
Ver i log model

Generate Data
Integr i ty Proper ties

Signal
Gener ator

AutoSVA Fr am ewor k

For m al
Ver i f i cat i on
testbench

RTL
m odule

i nter face

Formal
ver i f ication
commands

Add
includes/

submodules

Tool -Linker

13

Parse
Input/Output

Signals

Bui ld
Trans.
Object

Parse
Annotations

Par ser

Generate Outgoing
Trans. Proper ties

Parse
Global

Parameter s

Pr oper ty Gener ator

Generate Incoming
Trans. Proper ties

Generate
Symbolic
Var iables

Generate
Handshake

Signals

Generate Auxi l iar y
Ver i log model

Generate Data
Integr i ty Proper ties

Signal
Gener ator

AutoSVA Fr am ewor k

For m al
Ver i f i cat i on
testbench

RTL
m odule

i nter face

Formal
ver i f ication
commands

Add
includes/

submodules

Tool -Linker

The AutoSVA Framework

14

Target Tool?
Currently support

JasperGold (JG) &
SymbiYosis (SBY)

The AutoSVA Framework

Parse
Input/Output

Signals

Bui ld
Trans.
Object

Parse
Annotations

Par ser

Generate Outgoing
Trans. Proper ties

Parse
Global

Parameter s

Pr oper ty Gener ator

Generate Incoming
Trans. Proper ties

Generate
Symbolic
Var iables

Generate
Handshake

Signals

Generate Auxi l iar y
Ver i log model

Generate Data
Integr i ty Proper ties

Signal
Gener ator

AutoSVA Fr am ewor k

For m al
Ver i f i cat i on
testbench

RTL
m odule

i nter face

Formal
ver i f ication
commands

Add
includes/

submodules

Tool -Linker

15

Target Tool
Currently support

JasperGold (JG) &
SymbiYosis (SBY)

< 1 second runtime to generate Formal Testbench

AutoSVA vs Common FPV methodology1

16

1. Formal Verification: An
Essential Toolkit for Modern
VLSI Design. E. Seligman, T.
Schubert, and A.K. Kumar

Evaluation Target: Open-Source Hardware

• We focus on modules of renown, open-source hardware projects:
• OpenPiton Manycore framework

• L1.5 and NoC buffers
• Ariane RISC-V Core

• Load-Store Unit (LSU) and its submodules: Page Table Walker (PTW),
Translation Lookaside Buffer (TLB) and Memory Management Unit (MMU)

• L1-Instruction Cache

17

AutoSVA Hierarchy strategy
1. Smaller modules should be verified first, and we move on to

parent modules once their submodules have been verified,
e.g. MMU once TLB and PTW are verified

2. The submodule properties might have involved an outgoing
transaction to a module which is now included within the
parent, e.g. TLB triggering Page table walks.

18

LSU

LU

MMU

PTW

TLB
The switch between assumptions to
assertion is also controlled by the
AutoSVA tool parameters

Finding a ghost-response bug in the MMU

1. Writing AutoSVA annotations: 10 min
2. AutoSVA properties generation: 0.7s
3. Debugging time due to spurious CEXs: 30 min
4. Trace length of Bug Hit: 5 cycles
5. FPV tool runtime to generate trace: 0.2s

19

LU

MMU

PTW

TLB

REQ1
RES1 RES2

LSU

MMU ghost response bug-fix

20

• We made a tentative bug-fix and got proof of no CEX!
• The total invested time from writing AutoSVA

annotations to finding the bug, fixing it, and getting
bug-fix proof was around 1h

Why should I use AutoSVA? To…
• Assist hardware designers at every stage of RTL development, by providing

them with a formal testbench (FT) that they can run to get CEXs or proofs to
work in progress

• Provide a FT quickstart that can be extended through manual addition of
other properties, e.g. functional logic or if Full-Proof FPV is needed

21

• Complement system-level simulation. Properties
generated by AutoSVA can be connected to the system-
level testbench so that are also checked during simulation

Conclusions
• Verifying liveness and control-safety properties in an RTL design is complex

and challenging. Formal property verification of modules’ RTL can
exhaustively search for bugs via assertions at a very early project stage, but
SVA and FPV tools are hard to use and reason about.

• AutoSVA offers a framework to automatically generate Formal Testbenches
that check module interface expectations, based on designer-written
annotations.

• This pays off quickly, as it saves debugging time during
simulation and increase designer confidence that the
module will not hang within the system.

• movera@princeton.edu
• https://cs.princeton.edu/~movera

Contact

• https://github.com/PrincetonUniversity/AutoSVA
• Happy to assist on usage!

Open-Source Repository

• https://youtu.be/Gb5wT1D7dxU

AutoSVA tutorial

Thanks for
attending!

Questions?

23

mailto:movera@princeton.edu
https://cs.princeton.edu/~movera
https://github.com/PrincetonUniversity/AutoSVA
https://youtu.be/Gb5wT1D7dxU

