AV

AutoSVA: Democratizing Formal
Verification of RTL Module
Interactions

Marcelo Orenes-Vera, Aninda Manocha,
David Wentzlaff and Margaret Martonosi

A Presented by: Marcelo Orenes-Vera
PRINCETON movera@princeton.edu

UNIVERSITY

NGV

Veritying Module Interactions is Challenging

* Modern heterogeneous SoC design is complex and time- consummg

Fom O wismpntes

1. Multiple modules developed in different contexts *
2. These modules interact with each other

3. System can hang if one module never replies —
TI OMAP4 Heterogeneous SoC

Image Credit: Texas Instruments

NGV

Veritying Module Interactions is Challenging

* Modern heterogeneous SoC design is complex and time- consummg

Fom Ot wismpten
4+

1. Multiple modules developed in different contexts

2. These modules interact with each other
3. System can hang if one module never replies

System Bus

TI OMAP4 Heterogeneous SoC

Image Credit: Texas Instruments

» SystemVerilog Assertions (SVA) is a language to describe properties
about a hardware module. These properties can be:
» Safety properties: nothing bad will happen, e.g. mem request with invalid addr.
* Liveness properties: something good will eventually happen, e.g. get a response
* These can be asserted (check always), covered (observed at least once) or assumed

co__lsu_request_happens: cover property (lsu_load_sampled > 0);
Eg // Assert that if a valid transaction then eventually is ack'ed or dropped

as__lsu_load_hsk_or_drop: assert property (lsu_req_val |—>
s_eventually(!lsu_req_val || lsu_req_rdy)); 3

Hand-writing RTL properties in SVA is
tedious and error-prone. However,
properties are very important to check, as
the forward progress of the system depends
on all modules interacting as expected!

NGV

Need exhaustive testing of properties

* While properties can be checked during simulation-based verification, i.e. running
tests, there is no confidence that the SVA properties hold outside the tested scenarios.
* Very long traces on properties failing on system-level simulation
» Often only safety properties supported, and not liveness.

AV
Need exhaustive testing of properties

* While properties can be checked during simulation-based verification, i.e. running
tests, there is no confidence that the SVA properties hold outside the tested scenarios.
* Very long traces on properties failing on system-level simulation
» Often only safety properties supported, and not liveness.

* Properties can be checked thoroughly using Formal Property Verification (FPV) tools,
since they check every possible combination in the space state. FPV is more suitable
for verifying liveness properties and forward progress. But...

1. FPV has a steep learning curve

2. FPV requires both significant knowledge and engineering effort
* Need to write many properties and additional modeling code in Verilog

We need an automated method!

Such methodology would allow
hardware designers to verify the
modules they are developing

AV

The AutoSVA Framework

* AutoSVA: a framework for automatic generation of FPV testbenches to
verify well-formed transactions and forward progress of RTL modules
* AutoSVA introduces a transaction abstraction that enables automated

reasoning about liveness and safety properties of module interactions
thus allowing hardware designers to efficiently formally verify their RTL

by simply writing annotations at module interfaces

RTL File(s)

AutoSVA

I—b

Annotations

RTL
Implementation

AutoSVA
tool

v

Property File(s)

SystemVerilog

Assertions (SVA)

FPV
Tool

Formal Proofs
or CEX's

NGV

AutoSVA to Verity RTL Module Interactions

Issue 'su-load LSU
stage

o ﬁsu_storf MMU

Ariane Core OpenPiton Tile
L1-I$

(_) (‘NOC') L15$ (‘) L2$

L1-D$ slice

Load-Store Unit (LSU) Load interface

Need to verify that RTL

input logic
output logic
input fu_data_t

output logic
output logic [TRANS_ID_BITS-1:0]
output riscv::xlen_t

modules interact a
expected!

lsu_valid_i,
lsu_ready_o,
fu_data_i,

load_valid_o,
load_trans_id_o,
load_result_o,

Nim
AutoSVA Offers a Simple but Rich Language

* Transaction involves two events with an implication relation
* e.g., request->response, or any action->effect

* Transactions are named and can have various attributes
* e.g., valid, ready, trans_id, data, etc.

 Attributes can be defined explicitly in the RTL (by writing annotations, as shown in
the example), or implicitly (no annotation, when signals match our name convention)

AutoSVA Explicit Annotations to the LSU Load interface

/*AUTOSVA

lsu load: lsu_req —in> lsu_res

lsu_req_val = lsu_valid_i && fu_data_i.fu == LOAD

lsu_req_rdy = lsu_ready_o

[TRANS_ID BITS-1:0] lsu_req_transid = fu_data_i.trans_id

[CTRL_BITS-1:0] lsu_req_stable = {fu_data_i.trans_id, fu_data_i.fu}

lsu_res_val = load_valid_o

[TRANS_ID BITS-1:0] Ilsu _res_transid = load_trans_id_o

*/

Nim
AutoSVA Offers a Simple but Rich Language

* Transactions can be incoming and outgoing

* Incoming (in): An external module sends a request to the Design-Under-Test (DUT),
so that AutoSVA properties will assert that there is an eventual effect or response,
and that this follows certain conditions

* Outgoing (out): The DUT sends a request to an external module. Since the

behavior of this is outside the scope of the DUT, we assume that this transaction
behaves as expected (based on the annotations)

AutoSVA Explicit Annotations to the LSU Load interface (incoming)

/*AUTOSVA
u_res
wgliddi && fu_data_i.fu == LOAD

lsu load: lsu_req

lsu_req_val = lsu_ 4

lsu_req_rdy = lsu_ready_o

[TRANS_ID BITS-1:0] lsu_req_transid = fu_data_i.trans_id
[CTRL_BITS-1:0] lsu_req_stable = {fu_data_i.trans_id, fu_data_i.fu}
lsu_res_val = load_valid_o

[TRANS_ID BITS-1:0] Ilsu _res_transid = load_trans_id_o
*/

AV

Mapping Transactions to Properties

Fragment of the code and properties generated by AutoSVA

Attribute Properties generated
val* If P is valid, then eventually Q will be valid and

for each Q valid, there is a P valid
ack* If P is valid, eventually P is ack’ed or

P is dropped (if its stable signal is not defined)
stable If P is valid and not ack’ed, then it is stable next cycle
active This signal is asserted while transaction is ongoing
transid* Each Q will have the same transaction ID as P

transid_unique

There can only be 1 ongoing transaction per ID

data™

Each Q will have the same data as P

reg [TRANS_WIDTH-1:0] lsu_load_transid_sampled;
wire lsu_req_hsk = lsu_req_val && lsu_req_rdy;
wire lsu_load_set = lsu_req_hsk && lsu_req_transid == symb_1lsu_transid;
wire lsu_load_response = lsu_res_val && lsu_res_transid ==symb_1lsu_transid
always_ff @(posedge clk_i or negedge rst_ni) begin
if(!rst_ni) //counting transaction
lsu_load_sampled <= '0;
end else if (lsu_load_set || lsu_load_response)
1su_load_sampled <= lsu_load_sampled + lsu_load_set - lsu_load_response

end
// Assert that every request has response, and every reponse had a request

as__lsu_load_eventual_response: assert property (lsu_load_set |—>
s_eventually(lsu_load_response)));

as__lsu_load_had_a_request: assert property (lsu_load_response |->
lsu_load_set || lsu_load_sampled > 0);

AutoSVA generates both the necessary scaffolding
code and design properties based on the attributes
defined in the interface annotations

AV

RTL
module
interface

The AutoSVA Framework

Parser

Parse
Global
Parameters

Parse
Annotations

|

Build
Trans. p|
Object

Parse
[nput/Output
Signals

Signal
Generator

Generate
Symbolic
Variables

Generate
Handshake
Signals

Property Generator

Generate Auxiliary
Verilog model

Generate Incoming
Trans. Properties

Generate Outgoing
Trans. Properties

Generate Data
Integrity Properties

Tool-Linker

Formal
verification
commands

Add
includes/
submodules

Formal
Verification
testbench

AV

RTL
module
interface

The AutoSVA Framework

Parser

Parse
Global
Parameters

Parse
Annotations

Target Tool?
Currently support
JasperGold (JG) & |

|

Build
Trans. p|
Object

Parse
[nput/Output
Signals

Signal
Generator

Generate
Symbolic
Variables

Generate
Handshake
Signals

Property Generator

Generate Auxiliary
Verilog model

Generate Incoming
Trans. Properties

Generate Outgoing
Trans. Properties

Generate Data
Integrity Properties

SymbiYosis (SBY) |

Tool-Linker

Formal
verification
b| | commands

Add
includes/
submodules

Formal
Verification
testbench

NI
The AutoSVA Framework Target Tool

. Currently support
y < 1 second runtime to generate Formal Testbench JasperGold (JG) &
: SymbiYosis (SBY)
: Property Generator |
: Parser TP Generate Auxiliary : @
1gna Veril del .
[Parse Generator erilog mode Tool-Linker | !
| Global | t&
I Parameters Generate : F 1 |
: . Symbolic Generate Incoming orma |
RTL Build Variables Trans. Properties verification| | | Formal
module —> Parse p-| Trans. p = p-{ | commands | [o Verification
interface | Annotations Object | testbench
I Generate Generate Outgoing Add I
: Parse Hg?drig?ske Trans. Properties includes/ :
i | Iinput/output 8 submodules| | |
l Signals Generate Data !
' Integrity Properties '
I I
I I

NGV

AutoSVA vs Common FPV methodology?

|| Hardware Designer

[| Verification Engineer Days or weeks,

1. Formal Verification: An
Essential Toolkit for Modern
VLSI Design. E. Seligman, T.
Schubert, and A.K. Kumar

Days, since Verif. Eng.
does not know the design,
and needs communication with

.| AutoSVA depending hw designer
on design size ¢— Fix hand-wrmern properties
and spec. and refine assumptions
RTL Fil i
=) Write properties based on Property Fl.le(s) *
specification (might be Syste.mVenlog Debug CEXs to reach
o Assertions (SVA
Implementation informal and not complete and sertions (SVA) |\ —3 Formal Proofs or
need assistance from designer) PN tonl Commands enough confidence
and configurations
[]
h‘ Add assumptions to remove o
RTL Fi]e(s) i SPAEIONG CEXs since designer
.................... AutoSVA Property Flle(s) + knows the module
AutoSYA Tool Aiysrt:imverggi Debug CEXs to reach well
~ Annotations SEOOnK(SYR) »| Formal Proofs or
’ Paitisig FPV tool commands enough confidence
Implementation £ and configurations
— 16

A
Evaluation Target: Open-Source Hardware

* We focus on modules of renown, open-source hardware projects:
* OpenPiton Manycore framework
* [1.5 and NoC buffers
* Ariane RISC-V Core

* Load-Store Unit (LSU) and its submodules: Page Table Walker (PTW),
Translation Lookaside Buffer (TLB) and Memory Management Unit (MMU)

e [1-Instruction Cache

OpenPitan Ariane 7 ¢®

NGV
AutoSVA Hierarchy strategy

1. Smaller modules should be verified first, and we move on to
parent modules once their submodules have been verified,
e.g. MMU once TLB and PTW are verified

LSU

LU

2. The submodule properties might have involved an outgoing
MMU transaction to a module which is now included within the
parent, e.g. TLB triggering Page table walks.

PTW

The switch between assumptions to
LB assertion is also controlled by the
AutoSVA tool parameters

18

NIG=VA
Finding a ghost-response bug in the MMU

I_S U misa'ig"i]:’_‘i;’ji: REQl \ .
....................... e —
I_U E E tst_at::: IDLE YWAIT GRANT APTE_LOOKUP
+rs ptw_active f
: *T - E P PO 7 \
l - Isu_exception_o.valid / \
MMU
l T 1. Writing AutoSVA annotations: 10 min
o 2. AutoSVA properties generation: 0.7s
. 3. Debugging time due to spurious CEXs: 30 min
: . 4. Trace length of Bug Hit: 5 cycles
feseeeeee - 50 FPV tool runtime to generate trace: 0.2s

19

NGV
MMU ghost response bug-fix

v’i Assert \anane ex_stage_ i.lsu _i.i_mmu.i_ptw.u_ptw_sva.as_| itlb_iface_transid _data_integrity ;,I (10) [Infinite | O.2j
¢ |Assert "ir!ieeE stage_i. ilsu _i.i_mmu. 'B,twj{ﬁtw sva.as_| |th iface. ter,|d actlve j,N,,(??f)iJ,,i'nﬁn'te‘ 0{
Qfﬁ ‘Aﬁert,fl'YE) 77Jar|ane ex_stage_i. lsu_ _i.i_mmu.i_ptw.u_ptw_sva.as__ |th |face transid_hsk_or_drop I(1§)] Li,'nf,m't?‘ 24
4 ;Assert (I|ve) \arlane ex_stage_ i.lsu _i_mmu.i ptw u_ptw_sva.as_| |th |face transid eventual _response [1(16) lnﬁnitei 18
v VEAssert \arlane ex_stage_ I|SU I.i_mmu.i_ptw.u_ ptwisva as_ | |th lfacewtiransm _was_a_ request Ni48) Inﬁmteir 01
4 ?Assert \arlane ex etage ITSUI i }rwmu i_ptw.u_ptw _sva.as__ 7dﬁbﬂ:’e transid actlve I (62) 7 Inﬁmte‘ 1.9?
4 EAssert (ije) 7 ‘ar!ane ex_rsAtage_!“Isru _i.i_mmu.i_ptw.u_ptw_sva. as_qplptlface?fcransnrc_i_hsk_er_drerp I (3) : Inﬁnltew 01

\arlane ex stage I|SU _i.i_mmu.i ptwu ptw SVa.as__ dth iface transnd _was_a request

* We made a tentative bug-fix and got proof of no CEX!

* The total invested time from writing AutoSVA
annotations to finding the bug, fixing it, and getting
bug-fix proof was around 1h

20

AN
Why should | use AutoSVA? To...

* Assist hardware designers at every stage of RTL development, by providing
them with a formal testbench (FT) that they can run to get CEXs or proofs to
work in progress

* Provide a FT quickstart that can be extended through manual addition of
other properties, e.g. functional logic or if Full-Proof FPV is needed

* Complement system-level simulation. Properties
generated by AutoSVA can be connected to the system-
level testbench so that are also checked during simulation

NI
Conclusions

 Verifying liveness and control-safety properties in an RTL design is complex
and challenging. Formal property verification of modules’ RTL can
exhaustively search for bugs via assertions at a very early project stage, but
SVA and FPV tools are hard to use and reason about.

* AutoSVA offers a framework to automatically generate Formal Testbenches

that check module interface expectations, based on designer-written
annotations.

* This pays off quickly, as it saves debugging time during
simulation and increase designer confidence that the
module will not hang within the system.

NGV

Thanks for

- EENS attending!
e movera@princeton.edu
e https://cs.princeton.edu/~movera Qu est | ons ?

s Open-Source Repository

e https://github.com/PrincetonUniversity/AutoSVA
e Happy to assist on usage!

EIsE [AutoSVA tutorial
I'jr_' 3 e https://youtu.be/Gb5wT1D7dxU

23

mailto:movera@princeton.edu
https://cs.princeton.edu/~movera
https://github.com/PrincetonUniversity/AutoSVA
https://youtu.be/Gb5wT1D7dxU

