Chipyard, FireSim, and Hammer:
A Push-Button End-to-End Stack for Open-Source

Computer Architecture Research
Berkeley
Archi |tectu re
Research

Sagar Karandikar, Nayiri Krzysztofowicz
{sagark, nayiri}@eecs.berkeley.edu

cHIPYARD OFieSim . Hammer

A Golden Age in Computer Architecture

* No more traditional scaling...

* An architect’'s dream: everyone
wants custom microarchitectures
and HW/SW co-designed systems

* Also, a golden age to have direct
Impact as researchers

« Exploding open-source hardware
environment

* An open-ISA that can run software
we care about

https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-
Berkeley Architecture Research age-for-computer-architecture/fulltext)

https://cacm.acm.org/magazines/2019/2/234352-a-new-golden-age-for-computer-architecture/fulltext

A Dark Age in Computer Architecture tool

* What do we need to do good architecture research?

* Need tools that let us evaluate designs on a variety of metrics:
« Functionality
» Performance
* Power
* Area
* Frequency

« Especially in small teams (grad students, startups), these tools need to be agile

« Historically, without good open IP, had to build abstract arch/uarch simulators out
of necessity

« But now, we have much better IP and software compatibility, so what’s stopping us?

@ Berkeley Architecture Research 3

» Designed to be operated by hundreds
of engineers

* Not, 10s of engineers or 1s-10s of
grad students

* Three hard questions:

 Where do | get a collection of well-tested
hardware IP + complex software stacks
that run on it?

« How do | quickly obtain performance
measurements for a novel HW/SW
system?

 How do | get ASIC QoR feedback and
tape out a design, with flexibility between
open-source and proprietary flows?

%;) Berkeley Architecture Research

Three hard questions, answered! 'é$

* Where do | get a collection of well-tested hardware IP + complex
software stacks that run on it?

tFCHIP

* How do | quickly obtain performance measurements for a novel HW/SW

e O FireSim

* How do | get ASIC QoR feedback and tape out a design, with flexibility
between open-source and proprietary flows

Hammer

@ Berkeley Architecture Research 5

What can | do with these tools? 'é$
£ JCHIP . O FireSim

Hammer

)

Measure Functionality, Performance, Power,
Area, Frequency for real HW/SW systems,
quickly and easily, with small teams of engineers

@ Berkeley Architecture Research 6

Use Cases

Custom SoC architecture
New blocks + reusing
existing blocks

@ Berkeley Architecture Research

RTL Simulation running test
binaries/micro-benchmarks

FPGA-accelerated simulation
running full workloads

FPGA prototyping for chip
bring-up / FPGA system

development

Tape-out the SoC to get
actual silicon results

Chipyard Organization

Custom SoC
Configuration
L 2
What is Chipyard? RTL Generators
RISC-V A Multi-level . Custom
. Cores ccelerators Caches Peripherals Verilog
* An organized framework for =
various SoC design tools .
RTL Build Process
« AnlIP Ilbrary of open-source IO and Harness Binding
RISC-V SoC components X Y Y ¥
FIRRTL IR
« A methodology for agile SoC | |
architecture design, FireSim Transforms: VLSI Transforms:
exploration, and evaluation FAME Decoupling _ Top and Harness Split
FPGA Platform Mapping Replace Memories
Assertion/Printf Synthesis Module Promotion
ILA Wiring Module Grouping
RAM Optimizations 10 Cell Technology Mapping
v v 4 v
FireSim Behavioral FPGA-Mapped :
Verilog Verilog Verilog VLSI Verilog
y ¥ ¥
FireSim FPGA- Software RTL Simulation FPGA Hammer Automated

) Accelerated Emulation | | |_Commercial | [Open-Source | Prototyping VLSI Flow
Berkeley Architecture Research

Chipyard Organization

SoC architecture and
generators

@ Berkeley Architecture Research

\ 4
RTL Generators
RISC-V Accelerators Multi-zevel Peripherals Custom
Cores Caches P Verilog_;

i

SoC Organization

Digital SoC Components
RocketTile BoomTile
Rocket > Boom
Core *| PTW §JU ‘| Core *| PTW
i\J Q?(% J\J
Q
L11$ L1D$ e L11$ L1D$
MMIO
i i i i i Accelerator
TileXBar TileXBar
¥ i v
SystemXBar
] ! ! t
L2 L2 Periphery Bus Front Bus
Bank Bank ; ; i 4 1
! ! UART | | GPIOs Gontiolutc SerDes
Memory Bus
> BootROM
> PLIC
> CLINT
*> Debug [—

@ Berkeley Architecture Research

SoC Organization

Digital SoC Components

RocketTile BoomTile
Rocket || b1y > Boom LI o1 Tiles:
Core S 1 Core . .
7 82 7 Each Tile contains a RISC-V core
n Lt g O e Lot and private caches
; . 1 ; T Several varieties of Cores
TileXBar TileXBar Supported

Interface supports integrating your
own RISC-V core implementation

@ Berkeley Architecture Research

L2

' l ICache TLE L1 Instru.ction Cache .
O C e a |Cache Tags 32-K|B 8-Way
16 Bytes/cycle
LO BTB

(1-cycle redirect) Instruction Fetch & Pn_eDecode (4 cycles)
(16 Byte window)

Dense L1 BTB
Inst Inst Inst Inst Inst Inst Inst Inst

PC I F I D EX M E M WB Sl Fetch Buffer
TAGE-L Branch

] (32 entries)

a1L 1

PC [TTCB7] [] [Int.RF] [] | [DTLB 1 1orocc Predictor SR mm
Int.EX Commit | (3-cycle redirect) -

Gen |$ Inst D$ Accelerator 4-Wide Decode

Access Decode | |al lal |Access | |al Return-Address
— — - Stack Decoder Decoder Decoder Decoder
FP.RF FP.EX1 FP.EX2 D FP.EX3 FrontEnd
. al al al pop HOoP HopP HoP
Rocket:
Execute Rename / Allocate / Retirement

ReOrder Buffer (128 entries)

 First open-source RISC-V CPU

Aem-g gy 2T1G
ayoe) 71

+ In-order, single-issue RV64GC core _L) %'Tmb 1| — T

« Efficient design point for low-power devices %, ?in,l or] I?:”prq |p32||pn|
SonicBOOM: o o o P e P

« Superscalar out-of-order RISC-V CPU i e .

« Advanced microarchitectural features to maximize IPC — —
 TAGE branch prediction, OOO load-store-unit, register renaming enied DL’:“ (3 ente

« High-performance design point for general-purpose systems T Ele SLSI:R

| S |

@ Berkeley Architecture Research Unit

Rocket and BOOM

PC IF ID
[Int.RF]

EX

MEM

| (DTLE]

WB

PC L= Int.EX Commit To RoCC
Gen 1$ Inst nt. D$ > Accelerator
Access Decode | |al lal |Access | |al
FP.RF FP.EX1 FP.EX2 FP.EX3
al al al

Rocket and SonicBOOM:
« Support RV64GC ISA profile

Boots off-the-shelf RISC-V Linux distros (buildroot, Fedora, etc.)

Fully synthesizable, tapeout-proven

Described in Chisel
Fully open-sourced

Berkeley Architecture Research

ICache TLB L1 Instruction Cache
ICache Tags 32-KiB 8-way
16 Bytes/cycle
LO BTB

(1-cycle redirect)

Dense L1 BTB
(2-cycle redirect)

Instruction Fetch & PreDecode (4 cycles)
(16 Byte window)

Inst Inst Inst Inst Inst Inst Inst Inst

TAGE-L Branch
Predictor
(3-cycle redirect)

Fetch Buffer
(32 entries)
Inst Inst Inst Inst

4-Wide Decode

Return-Address
Stack Decoder Decoder Decoder Decoder
FrontEnd
HoP HOP HorP Hop
Execute Rename / Allocate / Retirement
ReOrder Buffer (128 entries)
[100)3] HoP HoP noe
Floating-point - -
oo e rie | Distributed Scheduler
|___(128 Repgisters) |
—_— MEM Issue
gl AP0z INT Issue Queue
Register File Queue . Queue
{128 Registers) . 32 entries .
—Predicte PhyseaT] | 32 entries 32 entries

Register File (16 bits

Port Portl |Port| |Port| IPortl |Port| |Port| |Port|

poP HoP poe pop poeP popP pop poe
AW || Aw [[Aw [[Aw [[Fu [] Fru || AcU | [Acu |
Branch | | Branch | | 8ranch | [Branch | | FDiv K
Jump CSR RoCC Mul/Div EUs
St Buffer &
e e smoces| Forwarding
32 entri =
(B Tz (32 entries)
8B/cycle 8B/cycle DCache 8B/cycle Next-line
TIR Prefetcher
8 MSHRs
L1 Data Cache
Load/Store 32 KiB 8-Way Line Fill Buffers
Unit (10 entries)

L2

128bit/cycle

a1L 1

Aem-g g1y ZTS
ayoe) 71

128bit/cycle

PULP Cores in Chipyard ' °$

me 15 DT' _ I ggg . Ibex Core
a b — "'L‘;'U] B B> () ID Stage EX Block
. [[ons_ i
i oot o’ i s -=- i
LT | o [Lo] 8 E S
2 e [‘N B2 : K
. — Reg File ma=- addr_o a
= & w ing A ! i 52
. L il s A @owRISC A e n S
Select .E EE
hd fi‘ OPENHW
CVAG (Formerly Ariane): Ibex (Formerly Zero-RISCY):
+ RV64IMAC 6-stage single-issue in-order core * RV64IMC 2-stage single-issue in-order core
» Open-source * Open-source
* Implemented in SystemVerilog * Implemented in SystemVerilog
» Developed at ETH Zurich as part of PULP, » Developed at ETH Zurich as part of PULP
« Now maintained by lowRISC .

< « Now maintained by OpenHWGroup

Sodor Educational Cores 'é$

Sodor Core Collection

RISC-V
) Sodor 1-Stage
e Collection of RV32IM cores for ﬂg@;_

teaching and education E RISC-V
... | Sodor 2-Stage

» 1-stage, 2-stage, 3-stage, 5-stage . I R < S o T

implementations O
. M; ’ . e RISC-V

MICFO-COded_ bus-based Opcode zero? Sodor Micro-coded

iImplementation A A

. . 32(PC
« Used in introductory computer MR | ALUOp KA kB =l IdMA
. rsi
architecture courses at Berkeley s — S
+ { + RegSel MA <
|
> IR > A B — adde
* 32 GPRs +
PC +
M
N Select “ RA e | RogWr Y1 Memwr
(N e — (32-bit regs enReg enMem
enimm v data data
@ Berkeley Architecture Research — ¢
Bus

SoC Organization

Digital SoC Components

RoCC Accelerators:
» Tightly-coupled accelerator interface

« Attach custom accelerators to Rocket
or BOOM cores

BoomTile

000y

Jojels|@ooy

L

@ Berkeley Architecture Research

RoCC Accelerators

Core automatically decodes + sends
custom instructions to accelerator

Accelerator can write back into core
registers

Accelerator can support virtual-
addressing by sharing core PTW/TLB

BOOM/Rocket | '
Custom
TLBs PTW [>l Accelerator
Implementation
L11$ L1D$
SystemBus
) $
L2 Peripherals

Berkeley Architecture Research

Flexible interface supports a variety of
accelerator designs

Included in Chipyard:

« Gemmini ML accelerator
 Hwacha vector accelerator
« SHA3 accelerator

17

MMIO Accelerators

Digital SoC Components

MMIO Accelerators:
» Controlled by MMIO-mapped registers
« Supports DMA to memory system
« Examples:
WO « Nvidia NVDLA accelerator
Accelerator
 FFT accelerator generator

L

@ Berkeley Architecture Research

SoC Organization

Digital SoC Components

TileXBar TileXBar -

e Interconnect IP:

SystemXBar
v
Periphery Bus Front Bus
i ¥
Control Bus
Memory Bus

@ Berkeley Architecture Research

TileLink Standard:
» TileLink is open-source chip-scale

interconnect standard

« Comparable to AXI/ACE
« Supports multi-core, accelerators,
peripherals, DMA, etc

Library of TileLink RTL generators
provided in RocketChip

RTL generators for crossbar-based
buses

Width-adapters, clock-crossings, etc.
Adapters to AXI4, APB

SoC Organization

Digital SoC Components

Shared memory:
« Open-source TileLink L2 developed by
SiFive
« Directory-based coherence with
MOESI-like protocol
« Configurable capacity/banking
» Support broadcast-based coherence in
no-L2 systems
« Support incoherent memory systems

L2 L2
Bank Bank

I

A
-
=

@ Berkeley Architecture Research

SoC Organization

Digital SoC Components

L

BootROM

PLIC

CLINT

Debug

@ Berkeley Architecture Research

Peripherals and IO:
« Open-source RocketChip + SiFive
blocks:
* Interrupt controllers
« JTAG, Debug module, BootROM

 UART, GPIOs, SPI, 12C, PWM, etc.
» TestChiplP: useful IP for test chips

« Clock-management devices

« SerDes

« Scratchpads

onse T

* Chisel — Hardware Construction Language built on Scala

* What Chisel IS NOT:
 NOT Scala-to-gates ‘ Chisel ‘ VLS|
« NOT HLS

* NOT tool-oriented language

* What Chisel IS:
* Productive language for generating hardware
* Leverage OOP/Functional programming paradigms
« Enables design of parameterized generators
* Designer-friendly: low barrier-to-entry, high reward
 Backwards-compatible: integrates with Verilog black-boxes

‘ FIRRTL H Verilog H VLSI ‘

‘ Chisel

@ Berkeley Architecture Research 22

LoamngCnisel i1

Many resources for learning Chisel:

« Step-by-step tutorial: Look inside
https://github.com/ucb-bar/chisel-tutorial . .
' Digital Design

 Jupyter notebook: with Chisel
https://github.com/freechipsproject/chisel-bootcamp |

» Chisel Textbook:
https://www.imm.dtu.dk/~masca/chisel-book.html

Martin Schoeberl

©

;_9 Berkeley Architecture Research 23

http://shttps/github.com/ucb-bar/chisel-tutorial
https://github.com/freechipsproject/chisel-bootcamp
https://www.imm.dtu.dk/~masca/chisel-book.html

FIRRTL — LLVM for Hardware

C/C++ LLVM PassManager x86 assembly
LLVM IR Dead code Statistics .
elimination collection Ot el
Rust ARM assembly
: Verilog for
FIRRTL Passes
Chisel SW Sim
FIRRTL IR exp?:::ion Statistics Netlist
: R collection manipulation Verilog for
Verilog elimination FPGA Sim

FIRRTL emits tool-friendly, synthesizable Verilog
@ Berkeley Architecture Research

Chipyard Organization °$

\ 4
RTL Generators
RISC-V Accelerators Multi-zevel Peripherals Custom
Cores Caches P Verilog_;

i

Berkeley Architecture Research 25

Chipyard Organization
Conppaton

©

}9 Berkeley Architecture Research 26

Highly Parameterized Configurations

Digital SoC Components class CustomConfig extends Config(
RocketTile BoomTile /new WithL1CacheWays(4) ++
Rocket || ooy > ,| Boom *%L new WithAsyncTiles ++
Core S & Core [/ : :
8 2 new WithSystemBusWidth(128) +
P = §§~ i\/‘*ﬂ/ new WithFPGemmini ++
L11$ L1D3 1 LIS 4 T1D3 new With3WideBooms ++
y y y y —] new WithL2TLBs(512) ++
T"eiXBar T"e)-(;ir/ | ___— new WithL2Sets(1024) ++
SystemXBar o
! ! ! t new WithDefaultGemmini ++
Bléik B:if— : Periphery Bus , “FrontTBuS new WithNRocketCores(1l) ++
1 T new WithNBoomCores(1l) ++
UART | | GPIO Control Bus SerD
Memory Bus S eroes new WithBootROM ++
| _BootROM new WithUART ++
§L_FLiC new WithJtagDTM ++
> CLINT new WithGPIOs ++
»|_ Debug |— new WithInclusiveCache(512) ++

@ Berkeley Architecture Research 27

Chipyard Organization

Berkeley Architecture Research

Custom SoC
Configuration
L]
RTL Generators
e Accelerators AUIRENE Peripherals BT
Cores Caches Verilog_;

i

28

Chipyard Organization

SW RTL Simulation:

 RTL-level simulation with
Verilator or VCS

* Not covered here

FPGA prototyping:

* Fast, non-deterministic
prototypes

* Not covered here

Hammer VLSI flow:

« Tapeout a custom config in
some process technology

* Overview of flow later

FireSim:

« Fast, accurate FPGA-
accelerated simulations

* Overview now

@ Berkeley Architecture Research

Custom SoC
Configuration

y

RTL Generators

RISC-V
Cores

Accelerators

Multi-level
Caches

Peripherals

Custom
Verilog

A 4

1

A 4

A 4

A 4

FireSim FPGA-
Accelerated Emulation

Software RTL Simulation

| Commercial | | Open-Source |

FPGA
Prototyping

Hammer Automated
VLSI Flow

29

An Open-Source Platform
for Scalable FPGA-

é |:| reS| m Accelerated Hardware

Simulation in the Cloud
(and now, local FPGAs too!)

https://fires.im
3y @firesimproject

;) Berkeley Architecture Research

Want HW simulators that:

 Are as fast as silicon

 Are as detailed as silicon

* Have all the benefits of SW-based simulators
 Are low-cost

Our Thesis:

* FPGAs are the only viable basis technology
= Build FPGA-accelerated simulators with
SW-like flexibility using an open-source tool

_ﬂ;:;} Berkeley Architecture Research

What about FPGA prototyping?

Taped-out SoC FPGA Prototype of SoC

Rocket
Core

Rocket
Core

Rocket
Core

Rocket
DRAM ol DRAM

Rocket

atency SoC RTL [l == SoC RTL
taped-out - on FPGA

Core
Other Peripherals Other Peripheral

@1 GHz @100 MHz

Rocket
Core

[

- - - -
[= | = = [==
(w) -_— (w) -_— w) -— (w) -—

I

SoC sees 100 cycle DRAM latency SoC sees 10 cycle DRAM latency

Eﬁ} Berkeley Architecture Research

The Difficulty with FPGA Prototypes

* Every FPGA clock executes one cycle of the simulated
machine

* Exposes latencies of FPGA resources to the simulated world.
Three problems:

1) FPGA resources may not be an accurate model (ex.
previous slide)

2) Simulations are non-deterministic
3) Different host FPGAs produce different simulation results

Berkeley Architecture Research 33

FireSim at 35,000 feet

* Open-source, fast, automatic, deterministic FPGA-accelerated
hardware simulation for pre-silicon verification and performance
validation

* Ingests:

e Your RTL design: FIRRTL (Chisel or Verilog via Yosys), blackbox Verilog
* Or Chipyard-generated designs with Rocket Chip, BOOM, NVDLA, PicoRV32, and more

* HW and/or SW 10 models (e.g. UART, Ethernet, DRAM, etc.)
* Workload descriptions

* Produces:

* Fast, cycle-exact simulation of your design + models around it

e Automatically deployed to cloud FPGAs (AWS EC2 F1)
* And now, local FPGAs too (e.g. Xilinx Alveo U250)

Berkeley Architecture Research 34

How-to-build a datacenter-scale
FireSim simulation

[1] S. Karandikar et. al., “FireSim: FPGA-Accelerated Cycle-Exact Scale-Out System Simulation in the Public Cloud.” ISCA 2018
[2] S. Karandikar et. al., “FireSim: FPGA-Accelerated Cycle-Exact Scale-Out System Simulation in the Public Cloud.” IEEE Micro Top Picks 2018

SEEA
é@ Berkeley Architecture Research #

Step 1: Server SoC in RTL

o
(O
| -
Q

-
Q.

-
Q

(el
| -
Q

-
i)

@)

' o o o o o ' o

Modeled System

- 4x RISC-V Rocket
Cores @ 3.2 GHz

- 16K I/D L1S
- 256K Shared L2S

- 200 Gb/s Eth.
NIC

Resource Util.
- < of an FPGA

Sim Rate
- N/A

Step 1: Server SoC in RTL

&L
(4°)
Q

-
o

e
)

[l
Q

-

)

@)

' o — (@) — (@) — o

Other Periph.

Modeled System

- 4x RISC-V Rocket
Cores @ 3.2 GHz

- 16K I/D L1S
- 256K Shared L2S

- 200 Gb/s Eth.
NIC

Resource Util.
- < of an FPGA

Sim Rate
- N/A

Step 2: FPGA Simulation of one server blade

Modeled System

- 4x RISC-V Rocket
Cores @ 3.2 GHz

- 16K I/D L1S
- 256K Shared L2S

- 200 Gb/s Eth.
NIC

- 16 GB DDR3
Resource Util.
- <% of an FPGA
- % Mem Chans
] EPGA Sim Rate

Fabric -~150 MHz
- ~40 MHz (netw)

)

Other Periph.
Sim Endpoints

PCle to Host

i
(L)
—
(]

i
o

=
(O]

(a1
S
(]

e
)

O

< 0608 ll z)2

NIC Sim
Endpoint

[

DRAM Model

Step 2: FPGA Simulation of one server blade

Modeled System

- 4x RISC-V Rocket
Cores @ 3.2 GHz

- 16K I/D L1S
- 256K Shared L2S

- 200 Gb/s Eth.
NIC

- 16 GB DDR3
Resource Util.
- <% of an FPGA
- % Mem Chans
] EPGA Sim Rate

Fabric -~150 MHz
- ~40 MHz (netw)

]

Sim Endpoints

Other Periph.

PCle to Host

2
()
{ .
]

<
Q.

e
)

o
| -
]

<

)

@

< 0608 ll z)2

NIC Sim
Endpoint

[

DRAM Model

Step 3: FPGA Simulation of 4 server blades

Modeled System

Cost- Server - 4 Server Blades
$0.49 ver hour Blade - 16 Cores
' Simulation i

(SpOt) 64 GB DDR3
Resource Util.
-< 1 FPGA

1.65 per hour
(Sgn-deenand) Server Server - 4/4 Mem Chans
. Bla;dte_ X Bla;dte_ Sim Rate
imulation imulation _~14.3 MH3z

(netw)

Step 3: FPGA Simulation of 4 server blades

Modeled System
- 4 Server Blades

[PPON INVYHA

- 16 Cores

Simulation F P G . -64 GB DDR3

Resource Util.

FPGA

igey
9dd

° . -< 1 FPGA
4_ S I m S) Server Server (4 S I _4/4 Mem Chans
Blade Blade Sim Rate
Simulation § Simulation

-~14.3 MHz
(netw)

Step 4: Simulating a 32 node rack

Modeled System

- 32 Server Blades
- 128 Cores
Cost: - 512 GB DDR3
$2.60 per - 32 Port ToR
hour (spot) Switch

s, 01 24
S1320 per EEEE EEEN ||nkS

hour (on- Resource Util.
demand) - 8 FPGAs =
- 1x f1.16xlarge
Sim Rate
-~10.7 MHz

(netw)

Step 4: Simulating a 32 node rack

Modeled System

- 32 Server Blades
- 128 Cores
Cost: - 512 GB DDR3
$2.60 per - 32 Port ToR
hour (spot) Switch

s, 01 24
S1320 per EEEE EEEN ||nkS

hour (on- Resource Util.
demand) - 8 FPGAs =
- 1x f1.16xlarge
Sim Rate
-~10.7 MHz

(netw)

Step 4: Simulating a 32 node rack

rpGA | Frca |IEE-= 1 FPGA
(4 Sims) § (4 Sims) (4 Sims)

Host Instance CPU: ToR SW|tch Model

FPGA FPGA FPGA FPGA
(4 Sims) § (4 Sims) f§ (4 Sims) § (4 Sims)

Modeled System
- 32 Server Blades
- 128 Cores

-512 GB DDR3

- 32 Port ToR
Switch

- 200 Gb/s, 2us

links

Resource Util.

- 8 FPGAs =

- 1x f1.16xlarge
Sim Rate

-~10.7 MHz
(netw)

Step 5: Simulating a 256 node “aggregation pod”

Modeled System

- 256 Server
Blades

- 1024 Cores
-4 TB DDR3
- 8 ToRs, 1 Aggr

E— . - 200 Gb/s, 2us
Aggregation Switch links

Rack Rack Rack

— Resource Util.
1i= pE A _ 64 FPGAS _
Rack Rack Rack T - 8x f1.16xlarge
FPoa - Ix m4.16xlarge
Sim Rate

-~9 MHz (netw)

Step 5: Simulating a 256 node “aggregation pod”

Modeled System

- 256 Server
Blades

- 1024 Cores
-4 TB DDR3
- 8 ToRs, 1 Aggr

E— . - 200 Gb/s, 2us
Aggregation Switch links

— Resource Util.
1is pE A _ 64 FPGAS _
Rack Rack Rack Ty - 8x f1.16xlarge
rPoa - Ix m4.16xlarge
Sim Rate

-~9 MHz (netw)

Rack Rack Rack

Step 6: Simulating a 1024 node datacenter

Aggregation Pod

FPGA | FPGA =i | FPGA
ims) 4 sims) f =z [=z
Rack Rack Rack
FPGA FPGA
i (4 sims) (4 sims) i

Root Switch

Aggregation Pod | Aggregation Pod

Modeled System
- 1024 Servers

- 4096 Cores
-16 TB DDR3

- 32 ToRs, 4 Aggr, 1
Root

- 200 Gb/s, 2us
links

Resource Util.

- 256 FPGAs =

- 32x f1.16xlarge
- 5x m4.16xlarge
Sim Rate

-~6.6 MHz (netw)

Step 6: Simulating a 1024 node datacenter

Modeled System
- 1024 Servers

Harnesses millions of dollars of FPGAs 6 Cores
. B DDR3
to simulate 1024 nodes cycle-exactly ors, 4 A
with a cycle-accurate network simulation
and global synchronization

at a cost-to-user of only 100s of dollars/hour i ‘AJ“'-
w S =

- 32x f1.16xlarge
- 5x m4.16xlarge
Sim Rate

-~6.6 MHz (netw)

Gb/s, 2us

Aggregation Pod | Aggregation Pod

Join the FireSim Community!:

Open-source users and industrial users

* More than 150 mailing list members and * Companies publicly announced using
500 unique cloners per-week FireSim
* Projects with public FireSim support * Esperanto Maxion ET
« Chipyard * Intensivate IntenCore
Rocket Chip * SiFive validation paper @ VLSI'20
BOOM * Galois and Lockheed Martin (DARPA
SSITH/FETT)

Hwacha Vector Accelerator

Keystone Secure Enclave

Gemmini

NVIDIA Deep Learning Accelerator (NVDLA)

* NVIDIA Blo%)foost:
https://devblogs.nvidia.com/nvdla/

« BOOM Spectre replication/mitigation
* Protobuf Accelerator
* Too many to list here!

Esperanto announcement at RISC-V Summit 2018

Berkeley Architecture Research 49

https://devblogs.nvidia.com/nvdla/

Join the FireSim Community!:

Academic Users and Awards

e ISCA ‘18: Maas et. al. HW-GC Accelerator * Awards: FireSim ISCA ‘18 paper:
(Berkeley) * |EEE Micro Top Pick

« MICRO ‘18: Zhang et. al. “Composable Building * CACM Research Highlights Nominee from ISCA ’18
Blocks to Open up Processor Design” (MIT) e Awards: FireSim users:

* RTAS ‘20: Farshchi et. al. BRU (Kansas) * ISCA “18 Maas et. al.:

* |EEE Micro Top Pick
* MICRO ‘18 Zhang et. al.:

e OSDI ‘21: Ibanez et. al. nanoPU (Stanford) * |EEE Micro Top Pick
* MICRO ‘21 Gottschall et. al.:
* MICRO-54 Best paper runner-up

e MICRO ‘21 Karandikar et. al.:

e EuroSys ‘20: Lee et. al. Keystone (Berkeley)

* CCS ‘21: Ding et. al. “Hardware Support to
Improve Fuzzing Performance and Precision”

(Georgia Tech) e _ _
* MICRO-54 Distinguished Artifact winner
* Too many to list here: see FireSim website for « IEEE Micro Top Pick Honorable Mention
more! DAC 21 Genc et. al.:
* https://fires.im/publications/#userpapers * DAC 2021 Best Paper winner

Berkeley Architecture Research 50

Join the FireSim Community!:

Academic Users and Awards

* ISCA’

18

Bl FireSim has been used* in published work
R from authors at over 20 academic and
. o industrial institutions

(Ge *actually used, not only cited

* Too
more!

* https://fire

ﬂf‘ﬁ! Berkeley Architecture Research 51

Wrapping-up: Productive Open-Source FPGA

Simulation

e oithub.com/firesim/firesim, BSD Licensed

* An “easy” button for fast, FPGA-accelerated full-

system simulation
* Plugin your own RTL designs, your own HW/SW models

* One-click: Parallel FPGA builds, Simulation run/result collection,
building target software

e Scales to a variety of use cases:
* Networked (performance depends on scale)
* Non-networked (150+ MHz), limited by your budget

e firesimcommand line program
e Like docker or vagrant, but for FPGA sims

* User doesn’t need to care about distributed magic happening Y
behind the scenes

S

Berkeley Architecture Research FireSim Developer Environment 52

W

LY~

https://github.com/firesim/firesim

Wrapping-up: Productive Open-Source FPGA

Simulation

* Scripts can call firesim to fully automate

distributed FPGA sim :
* Reproducibility: included scripts to reproduce ISCA 2018 $ cd f81m/deploy/wcrk10ads

results $ - /run—all .sh

e e.g.scripts to automatically run SPECInt2017 reference
inputs in =1 day
* Many others included

* Several user papers have gone through artifact evaluation
using FireSim (nanoPU, FirePerf, Protobuf accel., etc.)

* 180+ pages of documentation: https://docs.fires.im

* AWS provides grants for researchers:
https://aws.amazon.com/grants/ =

* Xilinx University Program provides FPGA

donations for university researchers:
https://www.xilinx.com/support/university.html

ﬁi‘
Y
1 Y/

Berkeley Architecture Research 53

https://docs.fires.im/
https://aws.amazon.com/grants/
https://www.xilinx.com/support/university.html

Two new FireSim features!

* Local FPGA support!

e Re-architecting of FireSim Manager, Drivers, and Shells to support adding new FPGA and
host platforms
* Now supports Xilinx Alveo XRT-enabled FPGAs (e.g. U250)

e Distributed Meta-simulations

 Early-stage accelerator development requires running many parallel verilator/vcs sims,
but these are traditionally accessed via Make-system in Chipyard/FireSim

* FireSim manager now supports distributing metasims using the same machinery as
distributing FPGA simulations, on both EC2 and local machines

» Same user-interface for workload/job specification/mapping, constructing heterogeneous systems,
running sims, and collecting outputs (now including waveforms)

Berkeley Architecture Research 54

Hammer: Open-Source RTL-to-GDS Flow

Nayiri Krzysztofowicz

nayiri@berkeley.edu

Berkeley
Archltectu re
Research

CHIPYARD

ASIC Design Environment '%3

Berkeley Architecture Research 56

ASIC Design Environment '%3

- RTL

- |P cores, ...

@? Berkeley Architecture Research 57

ASIC Design Environment '%3

- RTL

- |P cores, ...

. Transistor process
- Intel 7nm, TSMC 5nm, ...

@; Berkeley Architecture Research 58

ASIC Design Environment '%3

- RTL

- |P cores, ...

. Transistor process
- Intel 7nm, TSMC 5nm, ...

Tools . CAD/EDA tools

- Cadence Innovus, Synopsys VCS, ...

@:ﬁ Berkeley Architecture Research 59

ASIC Design Environment '%3

- RTL

- |P cores, ...

. Transistor process
- Intel 7nm, TSMC 5nm, ...

enter open-source...
Tools . CAD/EDA tools

- Cadence Innovus, Synopsys VCS, ...

@:ﬁ Berkeley Architecture Research 60

New Open-Source Landscape '%3
. Open-source RTL generators CH I P&(ARD

. Transistor process
- Intel 7nm, TSMC 5nm, ...

Tools . CAD/EDA tools

- Cadence Innovus, Synopsys VCS, ...

@9 Berkeley Architecture Research 61

New Open-Source Landscape '%3
. Open-source RTL generators CH I P&(ARD

|

-

. Open-source process technologies srUuIaer

Tools . CAD/EDA tools

- Cadence Innovus, Synopsys VCS, ...

@9 Berkeley Architecture Research 62

New Open-Source Landscape

. . Open-source RTL generators CH I r#&(ARD

sKyuwater
Tools . Open-source CAD tools Ope N ROAD

. Open-source process technologies

-

@9 Berkeley Architecture Research 63

CHIPYARD

. SoC design framework Contguaton

y
RTL t itten in Chisel and
. generators writien In ISel an RISCV Mult-evel . Custom
Accelerators Peripherals :
. . Cores Caches Verilog
elaborated into Verilog 7
RTL Build Process
Digital SoC Components 10 and Harness Binding
RocketTile BoomTile X Y Y L
Ré);::(:l = > s BCooc:r: e FIRRTL IR
X
= g | 1 : !
L11$ L1D$ 3‘ L11$ L1D$. FireSim Transforms: VLSI Transforms:
MMI ; :
FAME Decoupling Top and Harness Split
| . TileXBar . | | : TiIe)tBar : | esep] FPGA Platform Mapping Replace Memories
i ¥] Assertion/Printf Synthesis Module Promotion
| SystemXBar | ILA Wiring Module Grouping
] ! i t RAM Optimizations IO Cell Technology Mapping
L2 L2 Periphery Bus | | Front Bus | T i L]
. e ! FireSim Behavioral FPGA: ;\Aapped
Control B 3 i
Memory Bus UART | [GPIOs | L=mm || SerDes Verilog Verilog Verilog VLS! Verilog
: ¥ i y
FireSim FPGA- Software RTL Simulation FPGA Hammer Automated
Accelerated Emulation | | [_Commercial] [[Open-Source] Prototyping VLSI Flow

Berkeley Architecture Research 64

Skywater 130nm '%3

. open-source 130nm PDK
. 5 metal layers + interconnect
. first open-source (real) PDK

. previous open-source PDKs were not implementable:

- asap/

- nangate45 GO gle i

- freepdkas + sKywater
. OpenRAM: SRAM generator S

FOSS 130nm Production PDK
github.com/google/skywater-pdk

65

; Berkeley Architecture Research

OpenROAD

SW PDK

Synthesis - Yosys
. (+ABC, OpenSTA) ﬁ

Place and route - OpenROAD

- (+RePLace, TritonCTS, | | ! o v
i RC Extraction
. RTL Synthesis ustom Scripts (DEF2SPEF)
TritonRoute, Klayout) oo . 7
Synth <
. Exploration v g STA
° D RC - M ag IC (OPSBIQTA‘ E — ﬂnSTL)
Y
. LVS -N etg en 1 > Tionfate) o2 Sveaming
DFT I— v
Fault
S Physical
Verification

Design < (magic & netgen)

\ 4

@BerkeleyArchitecture Research https://github.com/The-OpenROAD-Project/OpenROAD | &' | 66

https://github.com/The-OpenROAD-Project/OpenROAD

Hammer: Simplifying VLSI Flows '%3

* Problem: VLSI flows must be rebuilt for each project

» Overhead compounded by:

* Changing CAD tool vendors

« Commands / features change
* File formats / library locations

* New process technology

« SRAMs (compiled/pre-generated?)
* DRC rules

* Different design
 Floorplanning / power / clock

Tool
Concerns

Process
Technology
Concerns

Non-reusable TCL script
@ Berkeley Architecture Research 67

Hammer “Separation of Concerns” %3

« Solution: Add a layer of abstraction

Tool:
 Three categories of flow input * In/out files
« Design-specific « TCL che
 Tool/Vendor-specific « Tech. file
formats

« Technology-specific

 Hammer Goal: specify all three
separately
 Allow reusability

 Allow for multiple “small” experts instead
of a single “super” expert

 Build abstractions/APIs on top

p ;: Berkeley Architecture Research 68

Hammer Software Architecture '%3

T
:;’, Hammer IR | | Python Class | | Generated Files design.yml
8 |
visi.inputs:
Tech Plugin Hammer : POWel=SRet:
: clocks:
. 1 ___/_\
tech.json --|-1- |
--+4-» | Config Parser | <«-+---1
defaults.yml | -|- 1 - ; Tool Plugin
__init__.py €-1---- > | Tech Library -1-1 defaults.yml
design-visi Tool Library | <€+-t--- » __init__.py
| |
def my_hook(M
e B I - - - - > CLI Driver <action>.tcl
X :HammerTool):
A
/\ init_design
my_hook

% —>»> design-visi -p design.yml <action>

Berkeley Architecture Research 69

Hammer Software Architecture '$

* Written in Python
« Hammer IR (intermediate representation) - codifies design information in

JSON/YAML
* Modify attributes with additional Hammer IR snippets

* Great for overriding tech- and tool-default settings

* Plugins extend Hammer to any technology/tool

Specify clock signals vlsi.inputs.clocks: [
{name: "clock", period: "lns", uncertainty: "0.lns"}

e .]
° perform any addltlonal actions # Generate Make include to aid in flow

_ _ vlsi.core.build system: make
* m0d|fy/generate files # Pin placement constraints
vlsi.inputs.pin mode: generated
vlsi.inputs.pin.generate mode: seml auto
vlsi.inputs.pin.assignments: |

{pins: "*", layers: ["ML", "M/"], side: "bottom"}
@ Berkeley Architecture Research] 70

* translate IR to TCL scripts

® calculate constraint values

Everyone can use Hammer

How: provide sensible defaults with methods to override
Sensible default Override method
A default set of flow steps for every action (syn, par, etc.) Hooks - inject your own steps anywhere
Auto-generated timing (SDC) & power (CPF) constraints Use your own custom SDC and CPF files
Auto-generated power meshes from high-level parameters Use foundry-provided or your own mesh generator
Auto-generated Makefile implementing flow graph Running Hammer via command line, custom Makefiles

Result: gets you 80-90% of the way there out of the box

Easily learn the VLSI flow, get early design feedback
Chipyard examples with ASAP7, Sky130

@ Berkeley Architecture Research

https://github.com/ucb-bar/chipyard/tree/main/vlsi

SkyWater130 '%3

« SkyWater Technologies’ 130nm process is open-source!
o Google & efabless-sponsored MPW shuttles B ’
« RAMs
o Open-source: DFFRAM and OpenRAM
o Currently building a better generator (Rahul)
o Tool flow support
o Cadence syn/par, Calibre drc/lvs
o Open-source: OpenROAD tools
« Looking forward to:

o Integrating into teaching + demos

o more open-source PDKs
; Berkeley Architecture Research

3.0 mm

https://www.efabless.com/open_shuttle_program
https://github.com/Cloud-V/DFFRAM
https://github.com/efabless/sky130_sram_macros

OpenROAD Flow '%3

Yosys, OpenROAD, Magic, Netgen
Simple Rocket Chipyard design generated with OpenROAD:

@; Berkeley Architecture Research 73

Berkeley Engineering students pull off novel chip design in a single semester. The class shows successful model for
expanding entry into field of semiconductor design

Berkeley engineering students pull off novel chip
design in a single semester

Class shows successful model for expanding entry into field of

Berkeley Archi semiconductor design

74

Teaching

« ASAP7: EECS151 & EE251B labs/projects
« 32-bit RISC-V core
« Digital PLLs, LDOs, PUFs, RNGs

* Intel16: EE194/290C Tapeout (Sp ‘22)
 Bluetooth SoC
e Multi-core ML SoC

« TSMC 28HPC: EE194/290C (Sp 21)
 Bluetooth SoC

Berkeley Architecture Research 2021 EE194/290C chip: Bluetooth, AES, Rocket 75

Hammer Success: Real Tapeouts '%3

Verilog> Chisel> Chisel2 > Chisel3+BAG2 >
BAG ADCS EAGLEX
Raven-2 i
Ta— ‘ Hurricane-Z CraftP1 EAGLE
Raven-1 | Raven-3 Raven-4 8) s
15l ' | B =T i e
TTER . Ay -l S
LA : —_— " : g
' HE] gl i =
= o FADER
Ma Au Se a Mar
201 201 2016 2017 018 2019 _~%0
1 ‘
; 3t
R " s
i GiEatil
: . - o) BEAGLE
EOS14 CRAFT-0 Al
SWERVE GPS
EOS18 EOS22 EOS24 HYDRA

EOS16 EOS20 e 4
Raven, Hurricane: ST 28nm FDSOI, SWERVE: TSMC 28nm EOS: IBM 45nm SOI, CRAFT: 16nm TSMC,

fﬁ Berkeley Architecture Research 76

Motivation: Increasing Reusability

_ Design LoC Tech plugin LoC Hammer + Tool plugins LoC
LoC = lines == % unique LoC
of code 35
27.9
z 0 7
o
2 25 21.3
=
X 20
=3
S 15
s 10
X 7.9
% 10
I 3.3
5 0.8 0.7 n 2.5 1.4
0 =l
@ N) Q
> o <& F X @ > & NIl Q’A
& i) > v P 2 <@ 2 S
& O ® 5 Q
N &£ £ ®

@ Berkeley Architecture Research Chip (Time —) 77

Wrapping up: Join The Community! 'é$

» Used in industry and academia

* Development is all open-source and on GitHub
* “main” branch is active development, may be unstable

« We recommend using tagged releases (e.g. Chipyard 1.7.0 / FireSim 1.14.0 /
Hammer w/OSS RTL-to-GDS released 5:58am today ©)

« Heavy use of CI, GitHub code review, PRs, issues
« Sub-projects managed using submodules

« Several hundreds of pages of documentation!
* [f something isn’t clear, please let us know

* We appreciate feedback! We appreciate PRs even more!

@ Berkeley Architecture Research

Chipyard, Firesim, and Hammer are

Education Friendly

Proven in many Berkeley Architecture

courses
. . Custom SoC
« Hardware for Machine Learning Configuration
« Undergraduate Computer Architecture < *
. RTL Generators
- Graduate Computer Architecture RISCV Multi-level . Custom
L Accelerators Peripherals .
« Advanced Dlgltal ICs Cores Caches Verilog
. : 7 ¥]
Tapeout HW design course T Build Procecs
Intermediate
Advantages of common shared HW RISC-V Representation Process
f k Software i 3 Technology
ramewor . FireSim VLSI
* Reduced ramp-up time for students Transforms Transforms
« Students learn framework once, reuse it in | N ‘ ¥
FPGA- Software Automated
later courses . Accelerated \ RTL VLSI
« Enables more advanced course projects Simulation Simulation Flow

(tapeout a chip in 1 semester) Computer

Architecture
Class

Digital
Integrated Circuits
Class

Special Topics
Classes

@ Berkeley Architecture Research

Chipyard/FireSim/Hammer: An open,
extensible research and design platform

for HW/SW co-design

« Unified framework of parameterized
generators

* High-performance FPGA-accelerated

simulation

* Portable VLSI flow with support for
open-source and proprietary
processes and toolchains

« Open-sourced, community and
research-friendly

Berkeley Architecture Research

Community-
friendly

Research-
friendly

Multi-
purpose

Beginner- Education-
friendly friendly

Docs » Welcome to Chipyard’s documentation!) Edit on GitHu

Welcome to Chipyard’s documentation!

tJCHIP

Chipyard is a framework for designing and evaluating full-system hardware using
agile teams. It is composed of a collection of tools and libraries designed to provide
an integration between open-source and commercial tools for the development of

systems-on-chip.

O Important
v New to Chigyard? Jump to the Initial
P Repository Setup page for setup instructions.

L earn More

 Chipyard
e GitHub: https://github.com/ucb-bar/chipyard/ ﬁ C H I |_|-\
* Docs: https://chipyard.readthedocs.io/en/latest/index.html g
« Mailing List: https://groups.google.com/forum/#!forum/chipyard

 FireSim
 Website: https://fires.im/

. GitHub: https://github.com/firesim/firesim/ I: S
 Docs: https://docs.fires.im/en/latest/ é |re ” l I
« Mailing List: hitps://groups.google.com/forum/#!forum/firesim

e Hammer
 Website: https://www.hammer-eda.orqg/

- GitHub: https://github.com/ucb-bar/hammer H ammer

* Docs: https://docs.hammer-eda.org/en/latest/

@% Berkeley Architecture Research

https://github.com/ucb-bar/chipyard/
https://chipyard.readthedocs.io/en/dev/index.html
https://groups.google.com/forum/
https://fires.im/
https://github.com/firesim/firesim/
https://docs.fires.im/en/latest/
https://groups.google.com/forum/
https://www.hammer-eda.org/
https://github.com/ucb-bar/hammer
https://docs.hammer-eda.org/en/latest/

