

Gemmini: An Open-Source, Full-System DNN Accelerator Design and Evaluation Platform

Hasan Genc, Seah Kim, Vadim Vadimovich Nikiforov, Simon Zirui Guo, Borivoje Nikolić, Krste Asanović and Yakun Sophia Shao

DNNs are exploding in popularity...

Matt Christenson/BLM/2017

By Dllu - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/ w/index.php?curid=64517567

Apple Support

Which means DNN ACCELERATORS are exploding in popularity...

Edge TPU

Tesla FSD

Cloud TPU

Which means DNN accelerator **GENERATORS** are exploding in popularity...

MAGNet

Full-System Visibility

Full-System Visibility: SoC

Full-System Visibility: Memory Hierarchy

Full-System Visibility: Virtual Addresses

Full-System Visibility: Host CPUs

Full-System Visibility: Operating System

Oc Interconnects atc

Full-Stack Visibility

Gemmini

- DNN accelerator generator
 - RTL
 - Simulations
 - Runs Linux
- Flexible hardware template
- Full-stack
- Full-system

Gemmini: Spatial Array

- Parameters:
 - Dataflow
 - Datatypes
 - Dimensions
 - Pipelining

Spatial
Array

Gemmini: Spatial Array

- Parameters:
 - Dataflow
 - Datatypes
 - Dimensions
 - Pipelining

Gemmini: Spatial Array

- Parameters:
 - Dataflow
 - Datatypes
 - Dimensions
 - Pipelining

Spatial
Array

Gemmini: Non-GEMM Functionality

• Can be optimized out at elaboration-time

	Transposer			
	ReLU (+))))			
	Bitshift Accumulator SRAM			
K 16	PoolingMatrix ScalarEngineMultiplier			

Gemmini: Local Scratchpad

- Parameters:
 - Capacity
 - Banks
 - Single- or dual-port

	Scratchpad Bank 0		
	Bank K		
17 L			

Gemmini: Global Memory

- Parameters:
 - Capacity
 - Banks
 - DRAM controller

Gemmini: Host CPU

19

- Parameters:
 - In-order/out-of-order
 - ROB capacity
 - L1 capacity
 - Branch predictor

Gemmini: Virtual Address Translation

- Parameters:
 - TLB capacity
 - TLB hierarchy
 - e.g. L2 TLB

Gemmini: Full SoC

Gemmini: Programming Model

Performance: Overall

- DNNs:
 - ResNet50: 40.3 FPS
 - AlexNet: 79.3 FPS
 - MobileNet: 37.5 FPS
 - BERT: 167x speedup
- About 80% as fast as NVDLA

How Does the Full System and Full Stack Affect Performance?

Case Study: Memory Partitioning Schemes for Multi-Accelerator SoCs

Case Study: Memory Partitioning

SoC

Case Study: Memory Partitioning

- Single core
 - Private scratchpad more helpful
 - Much better for convs

Case Study: Memory Partitioning

- Single core
 - Private scratchpad more helpful
 - Much better for convs

- Dual core
 - Shared L2 more helpful
 - Much better for residual additions

What New Features Are Coming to Gemmini?

Ongoing Work: Transformers

Why Are Transformers Challenging on Gemmini?

- Optimized for dot-products and element-wise operations
- Normalization layers ran on CPU
 - Dequantization cost also incurred
- LayerNorms and Softmaxes were expensive

LayerNorm/Softmax

New Normalization Module

- New reduction operations supported
 - LayerNorm
 - Sum/mean
 - Variance/std-dev
 - Softmax
 - Max
 - Sum of exponentials

Transformers: New Trade-Offs

- Should the entire dimension being normalized be in scratchpad memory?
- Avoiding spilling to DRAM reduces arithmetic intensity
 - -73% reduction for BERT layers with LayerNorm

Matmul Arithmetic Intensity

Without Spilling to DRAM for LayerNorm

Matmul Dims

Transformers: Preliminary Results

- Implemented support for I-BERT
 - Integer-only variation of BERT
- **40x faster** than prior BERT implementation
 - Prior implementation in DAC paper
- More performance tuning is required ^o
 - Up to 2x performance degradation for normalized matmuls

Performance (% utilization)

Ongoing Work: Sparsity

Wide Design Space to Explore!

- Design space of sparse accelerators is very wide!
- Design points differ in:
 - NoC complexity
 - Data re-use
 - Supported sparse data formats
 - Memory access patterns
 - Scattered accesses
 - Key-matching, output-merging cost
 - May be larger than matmul unit!

• We need separation of concerns!

- We need separation of concerns!
- Functional behavior
 - E.g. matmul, convolution, sorting, etc.

 $MTTKRP \\ A_{ij} = \sum_{k} \sum_{l} B_{ikl} D_{lj} C_{kj}$

- We need separation of concerns!
- Functional behavior
 - E.g. matmul, convolution, sorting, etc.
- Dataflow
 - E.g. matmul, convolution, sorting, etc.

- We need separation of concerns!
- Functional behavior
 - E.g. matmul, convolution, sorting, etc.
- Dataflow
 - E.g. matmul, convolution, sorting, etc.
- Data formats
 - E.g. CSR, ELL, DBB, diagonal, etc.

CSR

ELL

- We need separation of concerns!
- Functional behavior
 - E.g. matmul, convolution, sorting, etc.
- Dataflow
 - E.g. matmul, convolution, sorting, etc.
- Data formats
 - E.g. CSR, ELL, DBB, diagonal, etc.
- Load balancing
 - Affects cost of NoC

Sparsity: Overview

Expressing Sparse Data Structures

 Express sparsity in terms of which iterators are "skipped"

- <u>A * B = C where A and B are CSR</u>
- Skip k if A(i,k) == 0
- Skip j if B(i,k) == 0
- <u>A * B = C where A is diagonal</u> Skip *i* if *i* != *k* Skip *k* if *i* != *k*

Skip k if A(i,->) == 0

Sparsity: Spatial Array Generation

Upcoming Events: MLSys Tutorial

MLSys 2022 Tutorial

- New transformer features
- New parallelization features for ONNX-Runtime
 - Parallelizing across *multiple* accelerators
- New performance models
 - Uses Timeloop
 - Enables faster DSE
- New usability improvements
 - Run many simulations in parallel

Conclusion

- Gemmini is:
 - Full-system
 - Full-stack
- Enables DSE and hardware/software co-design
- Open-source!

DARP

• github.com/ucb-bar/gemmini

Funded by DARPA RTML program (contract FA8650-20-2-7006)

- Upcoming events:
 - MLSys Tutorial
 - Santa Clara, CA
 - September 1st, 2022