
Gemmini: An Open-Source, Full-System DNN 
Accelerator Design and Evaluation Platform

Hasan Genc, Seah Kim, Vadim Vadimovich Nikiforov, Simon Zirui Guo, 
Borivoje Nikolić, Krste Asanović and Yakun Sophia Shao



DNNs are exploding in popularity…

Matt Christenson/BLM/2017 By Dllu - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/
w/index.php?curid=64517567

2

Apple Support



Which means DNN ACCELERATORS
are exploding in popularity...

Edge TPU Tesla FSD Cloud TPU

3



Which means DNN accelerator 
GENERATORS are exploding in popularity…

VTA

MAGNet

DNNWeaver

However, they lack full-
system and full-stack 

visibility

4



Full-System Visibility

5



Full-System Visibility: SoC

6

Performance Impacts
Resource contention, etc.



Full-System Visibility: Memory Hierarchy

Performance Impacts
Cache coherence, miss 

rates/latencies, etc.

7



Full-System Visibility: Virtual Addresses

Performance Impacts
Page faults, TLB hits, etc.

8



Full-System Visibility: Host CPUs

Performance Impacts
Unaccelerated kernels, etc.

9



Full-System Visibility: Operating System

Linux
Performance Impacts

Interrupts, context 
switches, etc.

10



Full-Stack Visibility

High

LowDirect hardware configuration, low-level ISA

Medium

11



• DNN accelerator generator
• RTL
• Simulations
• Runs Linux

• Flexible hardware template
• Full-stack
• Full-system

Gemmini

12



• Parameters:
• Dataflow
• Datatypes
• Dimensions
• Pipelining

Gemmini: Spatial Array

13



• Parameters:
• Dataflow
• Datatypes
• Dimensions
• Pipelining

Gemmini: Spatial Array

Parallel Vector Engines
(like NVDLA)Systolic Array (like TPU)

14



• Parameters:
• Dataflow
• Datatypes
• Dimensions
• Pipelining

Gemmini: Spatial Array

15



• Can be optimized out 
at elaboration-time

Gemmini: Non-GEMM Functionality

16



• Parameters:
• Capacity
• Banks
• Single- or dual-port

Gemmini: Local Scratchpad

17



• Parameters:
• Capacity
• Banks
• DRAM controller

Gemmini: Global Memory

18



• Parameters:
• In-order/out-of-order
• ROB capacity
• L1 capacity
• Branch predictor

Gemmini: Host CPU

19



• Parameters:
• TLB capacity
• TLB hierarchy

• e.g. L2 TLB

Gemmini: Virtual Address Translation

20



Gemmini: Full SoC

21



Gemmini: Programming Model

High

LowDirect hardware configuration, low-level ISA

MediumHand-tuned C library for DNNs

22

matmul(…); conv(…); residual_add(…); 
max_pool(…); global_averaging(…)

configure_loads(…); configure_stores(…);
preload_spatial_array(…); feed_spatial_array(…)



Performance: Overall

24

• DNNs:
• ResNet50: 40.3 FPS
• AlexNet: 79.3 FPS
• MobileNet: 37.5 FPS
• BERT: 167x speedup

• About 80% as fast as NVDLA



25

How Does the Full System and Full Stack 
Affect Performance?



26

Case Study: Memory Partitioning 
Schemes for Multi-Accelerator SoCs



Case Study: Memory Partitioning

27



• Single core
• Private scratchpad more helpful
• Much better for convs

Case Study: Memory Partitioning

28



• Single core
• Private scratchpad more helpful
• Much better for convs

Case Study: Memory Partitioning
• Dual core
• Shared L2 more helpful
• Much better for residual additions

29



30

What New Features Are Coming to 
Gemmini?



31

Ongoing Work: Transformers



Why Are Transformers Challenging on 
Gemmini?
• Optimized for dot-products and 

element-wise operations
• Normalization layers ran on CPU
• Dequantization cost also incurred

• LayerNorms and Softmaxes were 
expensive

32

Features

Sequence
length

Batc
h

LayerNorm/Softmax



New Normalization Module

33

÷
Σ

÷ ÷ ÷

Normalizer

From accumulator SRAMs

To activation 
functions and DMA

• New reduction operations 
supported
• LayerNorm

• Sum/mean
• Variance/std-dev

• Softmax
• Max
• Sum of exponentials



Transformers: New Trade-Offs

• Should the entire dimension 
being normalized be in 
scratchpad memory?
• Avoiding spilling to DRAM 

reduces arithmetic intensity
• -73% reduction for BERT 

layers with LayerNorm

34



Transformers: Preliminary Results

• Implemented support for I-BERT
• Integer-only variation of BERT

• 40x faster than prior BERT 
implementation
• Prior implementation in DAC paper

• More performance tuning is required
• Up to 2x performance degradation for 

normalized matmuls

35



36

Ongoing Work: Sparsity



Wide Design Space to Explore!

• Design space of sparse accelerators is very wide!

• Design points differ in:
• NoC complexity
• Data re-use
• Supported sparse data formats
• Memory access patterns

• Scattered accesses
• Key-matching, output-merging cost

• May be larger than matmul unit!

37



Sparsity: Separation of Concerns

• We need separation of concerns!

38



Sparsity: Separation of Concerns

• We need separation of concerns!

• Functional behavior
• E.g. matmul, convolution, sorting, etc.

39

Matmul

MTTKRP



Sparsity: Separation of Concerns

• We need separation of concerns!

• Functional behavior
• E.g. matmul, convolution, sorting, etc.

• Dataflow
• E.g. matmul, convolution, sorting, etc.

40



Sparsity: Separation of Concerns

• We need separation of concerns!

• Functional behavior
• E.g. matmul, convolution, sorting, etc.

• Dataflow
• E.g. matmul, convolution, sorting, etc.

• Data formats
• E.g. CSR, ELL, DBB, diagonal, etc.

41

8 2

1

0 2 2 2

0 1 2

CSR

ELL

8 2

1

8 2

0 0

1 0

0 1

0 0

3 0



Sparsity: Separation of Concerns

• We need separation of concerns!

• Functional behavior
• E.g. matmul, convolution, sorting, etc.

• Dataflow
• E.g. matmul, convolution, sorting, etc.

• Data formats
• E.g. CSR, ELL, DBB, diagonal, etc.

• Load balancing
• Affects cost of NoC 42

×+ ×+



Sparsity: Overview

43

Functionality

Dataflow

Sparse data 
structures

Load-
balancing

DSL

Gemmini
Backend

Verilog

Performance 
Estimates

Outputs



Expressing Sparse Data Structures

• Express sparsity in terms 
of which iterators are 
“skipped”

44

A * B = C where A and B are CSR
Skip k if A(i,k) == 0
Skip j if B(i,k) == 0

A * B = C where A is diagonal
Skip i if i != k
Skip k if i != k

Simple “row-sparsity” example
Skip k if A(i,->) == 0



Sparsity: Spatial Array Generation

45

Dense Sparse



46

Upcoming Events: MLSys Tutorial



MLSys 2022 Tutorial

• New transformer features
• New parallelization features for ONNX-Runtime
• Parallelizing across multiple accelerators

• New performance models
• Uses Timeloop
• Enables faster DSE

• New usability improvements
• Run many simulations in parallel

47



48

Conclusion
• Gemmini is:
• Full-system
• Full-stack

• Enables DSE and 
hardware/software co-design
• Open-source!
• github.com/ucb-bar/gemmini

Funded by DARPA RTML program 
(contract FA8650-20-2-7006)

• Upcoming events:
• MLSys Tutorial

• Santa Clara, CA
• September 1st, 2022


