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DNNs are exploding in popularity…

Matt Christenson/BLM/2017 By Dllu - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/
w/index.php?curid=64517567
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Apple Support



Which means DNN ACCELERATORS
are exploding in popularity...

Edge TPU Tesla FSD Cloud TPU
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Which means DNN accelerator 
GENERATORS are exploding in popularity…

VTA

MAGNet

DNNWeaver

However, they lack full-
system and full-stack 

visibility
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Full-System Visibility
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Full-System Visibility: SoC
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Performance Impacts
Resource contention, etc.



Full-System Visibility: Memory Hierarchy

Performance Impacts
Cache coherence, miss 

rates/latencies, etc.
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Full-System Visibility: Virtual Addresses

Performance Impacts
Page faults, TLB hits, etc.

8



Full-System Visibility: Host CPUs

Performance Impacts
Unaccelerated kernels, etc.
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Full-System Visibility: Operating System

Linux
Performance Impacts

Interrupts, context 
switches, etc.
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Full-Stack Visibility

High

LowDirect hardware configuration, low-level ISA

Medium
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• DNN accelerator generator
• RTL
• Simulations
• Runs Linux

• Flexible hardware template
• Full-stack
• Full-system

Gemmini
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• Parameters:
• Dataflow
• Datatypes
• Dimensions
• Pipelining

Gemmini: Spatial Array
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• Parameters:
• Dataflow
• Datatypes
• Dimensions
• Pipelining

Gemmini: Spatial Array

Parallel Vector Engines
(like NVDLA)Systolic Array (like TPU)
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• Parameters:
• Dataflow
• Datatypes
• Dimensions
• Pipelining

Gemmini: Spatial Array

15



• Can be optimized out 
at elaboration-time

Gemmini: Non-GEMM Functionality
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• Parameters:
• Capacity
• Banks
• Single- or dual-port

Gemmini: Local Scratchpad
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• Parameters:
• Capacity
• Banks
• DRAM controller

Gemmini: Global Memory
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• Parameters:
• In-order/out-of-order
• ROB capacity
• L1 capacity
• Branch predictor

Gemmini: Host CPU

19



• Parameters:
• TLB capacity
• TLB hierarchy

• e.g. L2 TLB

Gemmini: Virtual Address Translation
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Gemmini: Full SoC
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Gemmini: Programming Model

High

LowDirect hardware configuration, low-level ISA

MediumHand-tuned C library for DNNs
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matmul(…); conv(…); residual_add(…); 
max_pool(…); global_averaging(…)

configure_loads(…); configure_stores(…);
preload_spatial_array(…); feed_spatial_array(…)



Performance: Overall
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• DNNs:
• ResNet50: 40.3 FPS
• AlexNet: 79.3 FPS
• MobileNet: 37.5 FPS
• BERT: 167x speedup

• About 80% as fast as NVDLA
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How Does the Full System and Full Stack 
Affect Performance?
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Case Study: Memory Partitioning 
Schemes for Multi-Accelerator SoCs



Case Study: Memory Partitioning

27



• Single core
• Private scratchpad more helpful
• Much better for convs

Case Study: Memory Partitioning
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• Single core
• Private scratchpad more helpful
• Much better for convs

Case Study: Memory Partitioning
• Dual core
• Shared L2 more helpful
• Much better for residual additions
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What New Features Are Coming to 
Gemmini?
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Ongoing Work: Transformers



Why Are Transformers Challenging on 
Gemmini?
• Optimized for dot-products and 

element-wise operations
• Normalization layers ran on CPU
• Dequantization cost also incurred

• LayerNorms and Softmaxes were 
expensive
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Features

Sequence
length

Batc
h

LayerNorm/Softmax



New Normalization Module
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÷
Σ

÷ ÷ ÷

Normalizer

From accumulator SRAMs

To activation 
functions and DMA

• New reduction operations 
supported
• LayerNorm

• Sum/mean
• Variance/std-dev

• Softmax
• Max
• Sum of exponentials



Transformers: New Trade-Offs

• Should the entire dimension 
being normalized be in 
scratchpad memory?
• Avoiding spilling to DRAM 

reduces arithmetic intensity
• -73% reduction for BERT 

layers with LayerNorm
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Transformers: Preliminary Results

• Implemented support for I-BERT
• Integer-only variation of BERT

• 40x faster than prior BERT 
implementation
• Prior implementation in DAC paper

• More performance tuning is required
• Up to 2x performance degradation for 

normalized matmuls
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Ongoing Work: Sparsity



Wide Design Space to Explore!

• Design space of sparse accelerators is very wide!

• Design points differ in:
• NoC complexity
• Data re-use
• Supported sparse data formats
• Memory access patterns

• Scattered accesses
• Key-matching, output-merging cost

• May be larger than matmul unit!
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Sparsity: Separation of Concerns

• We need separation of concerns!
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Sparsity: Separation of Concerns

• We need separation of concerns!

• Functional behavior
• E.g. matmul, convolution, sorting, etc.
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Matmul

MTTKRP



Sparsity: Separation of Concerns

• We need separation of concerns!

• Functional behavior
• E.g. matmul, convolution, sorting, etc.

• Dataflow
• E.g. matmul, convolution, sorting, etc.
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Sparsity: Separation of Concerns

• We need separation of concerns!

• Functional behavior
• E.g. matmul, convolution, sorting, etc.

• Dataflow
• E.g. matmul, convolution, sorting, etc.

• Data formats
• E.g. CSR, ELL, DBB, diagonal, etc.
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Sparsity: Separation of Concerns

• We need separation of concerns!

• Functional behavior
• E.g. matmul, convolution, sorting, etc.

• Dataflow
• E.g. matmul, convolution, sorting, etc.

• Data formats
• E.g. CSR, ELL, DBB, diagonal, etc.

• Load balancing
• Affects cost of NoC 42

×+ ×+



Sparsity: Overview
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Functionality

Dataflow

Sparse data 
structures

Load-
balancing

DSL

Gemmini
Backend

Verilog

Performance 
Estimates

Outputs



Expressing Sparse Data Structures

• Express sparsity in terms 
of which iterators are 
“skipped”
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A * B = C where A and B are CSR
Skip k if A(i,k) == 0
Skip j if B(i,k) == 0

A * B = C where A is diagonal
Skip i if i != k
Skip k if i != k

Simple “row-sparsity” example
Skip k if A(i,->) == 0



Sparsity: Spatial Array Generation
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Dense Sparse
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Upcoming Events: MLSys Tutorial



MLSys 2022 Tutorial

• New transformer features
• New parallelization features for ONNX-Runtime
• Parallelizing across multiple accelerators

• New performance models
• Uses Timeloop
• Enables faster DSE

• New usability improvements
• Run many simulations in parallel
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Conclusion
• Gemmini is:
• Full-system
• Full-stack

• Enables DSE and 
hardware/software co-design
• Open-source!
• github.com/ucb-bar/gemmini

Funded by DARPA RTML program 
(contract FA8650-20-2-7006)

• Upcoming events:
• MLSys Tutorial

• Santa Clara, CA
• September 1st, 2022


