
SODA Synthesizer

Nicolas Bohm Agostini, Serena Curzel, Reece Neff, 
Ankur Limaye, Vinay Amatya, Marco Minutoli, 

Vito Giovanni Castellana, Joseph Manzano, 
Antonino Tumeo

Pacific Northwest National Laboratory

June 19, 2022

An End-to-End Compiler 
from High-Level 

Frameworks to Silicon

Michele Fiorito, Fabrizio Ferrandi

Politecnico di Milano



2

Motivations

• Data Science algorithms, Machine Learning 
models & frameworks are quickly evolving

▪ To keep increasing the performance within tight 
constraints: Domain-specific accelerators

• Existing accelerators start from specific models 
(e.g., DNNs) or only try to accelerate specific 
computational patterns

▪ Designing hardware accelerators by hand is complex 
and time-consuming

▪ Hardware designer may want to explore design 
space for trade-offs, depending on the applications

• Agile Hardware Design & Prototyping required

▪ Tools to quickly transition from algorithm 
formulation to the accelerator implementation, 
having sufficient design space exploration knobs and 
needing minimal human interaction

LeNet architecture [1]

[1] Y. Lecun, et al., “Gradient-based learning applied to document recognition,” Proc. IEEE, 1998



3

SODA Synthesizer: Overview

• A modular, multi-level, interoperable, extensible, open-
source hardware compiler from high-level programming 
frameworks to silicon

▪ Optimizations at all levels are performed as compiler optimization
passes

• Compiler-based frontend (SODA-Opt): leverages the Multi-
Level Intermediate Representation (MLIR) 

• Compiler-based backend (PandA-Bambu): leverages state-
of-the-art High-Level Synthesis (HLS) techniques, as well as 
a Coarse-Grained Reconfigurable Array (CGRA) generator

▪ Generates synthesizable Verilog for a variety of targets, from Field 
Programming Gate Arrays (FPGAs) to Application-Specific 
Integrated Circuits (ASICs)

[N. Bohm Agostini, et al., “Bridging Python to Silicon: The SODA Toolchain,” 

IEEE Micro, 2022]

[J. J. Zhang, et al., “Towards Automatic and Agile AI/ML Accelerator Design 

with End-to-End Synthesis,” ASAP 2021]

[M. Minutoli, et al., “SODA: a New Synthesis Infrastructure for Agile Hardware 

Design of Machine Learning Accelerators,” ICCAD 2020]



4

SODA Synthesizer: Frontend (SODA-Opt) 

• SODA-Opt: Search, Outline, Dispatch, Accelerate frontend optimizer 
“generates” the SODA High-Level IR

• Employs and embraces the MLIR framework

▪ Used in TensorFlow, TFRT, ONNX-MLIR, NPComp, others

▪ Several architecture independent dialects (Linalg, Affine, SCF) and optimizations

• Interfaces with high-level ML frameworks through MLIR “bridges” (e.g., 
libraries, rewriters)

• Defines the SODA MLIR dialect and related compiler passes to:

▪ Identify dataflow segments for hardware generation

▪ Perform high-level optimizations (dataflow transformations, data-level and 
instruction-level parallelism extraction)

▪ Generates interfacing code and runtime calls for microcontroller

SODA-OPT: System Overview

[N. Bohm Agostini, et al., “SODA-OPT: an MLIR-based flow for co-design and high-level synthesis,” CF 2022 - Best Poster Award]



SODA-Opt Optimization Passes

• The SODA-Opt optimization passes:

Single basic block containing the compute 

intensive part of the kernel

More freedom to schedule operations

Increased instruction-level parallelism

Schedule independent arithmetic operations on 

the same cycle when their inputs are available

Increased data-level parallelism

Schedule operations into different memory units 

on the same cycle

Avoid unnecessary reads from kernel arguments

Reduce expensive accesses to external memory

Reuse read results, aggregate on scalars

Save scalar values loaded from memory and 

intermediate results in registers rather than 

performing repeated memory accesses

Early alias analysis

Schedule memory operations independently on 

regions that don’t alias

Remove redundant or unnecessary operations

Avoid wasting resources

Tiling

Unrolling

Temporary Buffer 

Allocation

Alloca Buffer 

Promotion

Scalar Replacement 

of Aggregates

Early Alias Analysis

Outlining

Common 

Sub-expression 

Elimination

Dead Code 

Elimination

Structural

Memory

Avoid Redundancy 

and Promote Reuse

Avoid Unnecessary 

Operations



6

SODA Synthesizer: HLS Backend (Bambu)

• Backend: optimized low-level IR inputs to generate hardware descriptions 
of the accelerators 

• PandA-Bambu: open-source state-of-the-art high-level synthesis (HLS) 
tool as a backend

▪ Key features: parallel accelerator designs, modular HLS, and ASIC support

• The HLS backend:

▪ Provides automated testing and verification of the generated designs

▪ Provides the necessary generality to deal with novel algorithms

▪ Provides the opportunities for specialized and optimized templates by recognizing 
specific computational patterns

• SODA approach relies on progressive lowerings of compiler IRs, rather 
than rewriting annotated C/C++

Analysis & low-level optimization

Template 

based 

synthesis

Allocation

Scheduling

Binding

Modules (RTL IR)

System (RTL IR)

Verilog and Testbench

Backend: HLS

From: Frontend

To: Chip Design

[F. Ferrandi, et al., Invited: “Bambu: an Open-Source Research Framework for the High-Level Synthesis of Complex Applications,” DAC 2021]



7

SODA Synthesizer: Targets

• Supports different target technologies (FPGA, 
CGRA, ASIC) for actual generated designs

• ASIC targets:

▪ Commercial Tools (Synopsys Design Compiler with 
Global Foundries 12/14 nm cells)

▪ OpenROAD suite (FreePDK 45nm and ASAP 7nm cell 
libraries)

• Backends’ resources characterized for the target 
technology: 

▪ Eucalyptus tool in Bambu, allows driving hardware 
synthesis algorithms to optimize for area, latency, etc.

▪ OpenCGRA: evaluation of the results, metrics for the 
design space exploration

SODA characterization flow. The characterization 

flow can be extended to synthesize HLS generated 

designs, or used to estimate their area-latency-power 

profiles to drive the Design Space Exploration engine



8

From Python to optimized ASIC

• LeNet architecture: each of the operators are 

synthesized to an ASIC accelerator

• SODA-Opt optimized accelerators are bigger, 

but also much faster

LeNet architecture



9

ASIC Generation: Linear Algebra Kernels

• Results for 14 linear algebra kernels from PolyBench demonstrates the effectiveness of the end-to-end flow 

and high-level optimizations

• The SODA Synthesizer generates ASICs for all the provided kernels

• In most cases, SODA-Opt optimization pipeline provide significant speedups



10

Research Opportunities: System-Level Design

• Integrating with open-source fast prototyping 
platforms: Columbia University Embedded 
Scalable Platform (ESP)

• SODA-Opt

▪ MLIR is naturally modular and hierarchical

▪ Can lower to multiple targets, including runtimes

• Bambu

▪ Provides a fully open-source HLS backend for ESP 

• Can enable end-to-end fast prototyping from 
algorithmic concept to system implementation

[P. Mantovani, et al.,: “Agile SoC Development with Open ESP,” ICCAD 2020]



11

Research Opportunities: Dataflow 
architecture

• SODA provides a methodology to translate outlined kernels in two architectures:

▪ A centralized architecture with a microprocessor

▪ A dynamically scheduled, automatically generated, dataflow architecture



12

Research Opportunities: Profile-driven 
Synthesis

• Compiler infrastructure:

▪ Provides ecosystem for static & dynamic analysis

• Dynamic analysis possible by automated 
instrumentation and profiling

▪ E.g., capturing data-dependent patterns and 
memory transactions

▪ Information can be fed back to the synthesis engine 
to facilitate design space exploration of the memory 
and the overall architecture design

[A. Tumeo, et al., “Architecture independent integrated early performance and energy estimation,” IGSC 

2017]



13

Research Opportunities: Effective memory 
hierarchy & interfaces

• Compiler-based instrumentation can be used to capture dynamic memory traces

▪ Synthesis engine can use the information to balance computational intensity and memory latency

• Tolerate memory access latencies

▪ Manage computational intensity: change scheduling algorithms

▪ Optimize memory hierarchy & interfaces

• Optimizing for memory accesses

▪ Design effective memory hierarchy (e.g., include data buffers, scratchpads, prefetch engines)

▪ Compiler optimizations for data restructuring (e.g., array partitioning, matrix transpose) to effectively 
utilize underlying memory hierarchy

▪ Hierarchical memory interface that routes signals from different accelerators to a multi-port/multi-bank 
shared memory to maximize the available bandwidth utilization



14

Conclusions

• SODA: end-to-end compiler-based toolchain for generating domain-specific accelerators

▪ Modular, multi-level, and extensible

▪ Completely based on interoperating open-source technologies

▪ Can target reconfigurable architectures (e.g., FPGAs, CGRAs) as well as ASICs

▪ Considers system-level implications

▪ Enables automated design space exploration and agile hardware design

• The SODA Synthesizer provides a no-human-in-the-loop toolchain from algorithmic 
formulation to hardware implementation for complex workloads

SODA-OptSODA Docker Image Panda-Bambu HLS (v 0.9.7)SODA Tutorial: DATE 2022



15

Acknowledgements

• This work was partially supported by:

▪ The US DOE Office of Science project: “Advanced Memory to support Artificial Intelligence for Science” at 
PNNL

▪ The “Software Defined Architectures for Data Analytics” (SO(DA)^2) project under PNNL Data-Model 
Convergence Laboratory Directed Research & Development

▪ The “Software Defined Accelerators from Learning Tools Environment” (SODALITE) project under the 
DARPA Real Time Machine Learning (RTML) program 



Thank you

16

Thank you!


