Pacific | |
Northwest _ |
SODA Synthesizer e g s )\
An End-to-End Compiler w |
from High-Level | | !
Frameworks to Silicon EREGRNN |
§ o
PR \icolas Bohm Agostini, Serena Curzel, Reece Neff -;j’s‘_s,;jf_p.,
e =  Ankur Limaye, Vinay Amatya, Marco Minutoli, M\ me am O
& Vito Giovanni Castellana, Joseph Manzano, N A . /e S A\
i Antonino Tumeo AN 7 WO\
Pacific Northwest National Laboratory o
Michele Fiorito, Fabrizio Ferrandi :
Politecnico di Milano *.

EEEEEEEEEEEE

PNNL is operated by Battelle for the U.S. Department of Energy



o

Pacific

Northwest M Otivatio ns

NATIONAL LABORATORY

LeNet architecture [

« Data Science algorithms, Machine Learning |
models & frameworks are quickly evolving wy S e

= To keep increasing the performance within tight
constraints: Domain-specific accelerators

Full connection Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

* Existing accelerators start from specific models
(e.g., DNNs) or only try to accelerate specific
computational patterns

= Designing hardware accelerators by hand is complex
and time-consuming

» Hardware designer may want to explore design
space for trade-offs, depending on the applications

 Agile Hardware Design & Prototyping required

= Tools to quickly transition from algorithm
formulation to the accelerator implementation,
having sufficient design space exploration knobs and
needing minimal human interaction

[11Y. Lecun, et al, "Gradient-based learning applied to document recognition,” Proc. IEEE, 1998



o

Pacific

Northwest - SODA Synthesizer: Overview

NATIONAL LABORATORY

Metrics

e s 8] [vivese T [0 |

i | I*' 3 i * A modular, multi-level, interoperable, extensible, open-
e ' source hardware compiler from high-level programming
(;;n:h;;;"“;_‘_‘::_‘:i_‘:_‘::_‘:; “““““ . frameworks to silicon

i i———l——%%—n;%——x@—i— i = Optimizations at all levels are performed as compiler optimization
(ot . 2 l passes

i : ﬁ: BaﬁtgnlfﬂLR%::::atf:aw ; « Compiler-based frontend (SODA-Opt): leverages the Multi-
i oo P (Lo ir""r"';; Level Intermediate Representation (MLIR)

| | oo

* Compiler-based backend (PandA-Bambu): leverages state-
4'00 of-the-art High-Level Synthesis (HLS) techniques, as well as

: a Coarse-Grained Reconfigurable Array (CGRA) generator
- N i | = Generates synthesizable Verilog for a variety of targets, from Field
EENEEB/%?::O:Azg(?ZS;I]nII et al, "Bridging Python to Silicon: The SODA Toolchain,” Programming Gate Al’l’ayS (FPGAS) tO App|icati0n-SpeCiﬁC

Integrated Circuits (ASICs)

[J. J. Zhang, et al, “Towards Automatic and Agile Al/ML Accelerator Design
with End-to-End Synthesis,” ASAP 2021]

[M. Minutoli, et al, "SODA: a New Synthesis Infrastructure for Agile Hardware
Design of Machine Learning Accelerators,” ICCAD 2020]




o

Pacific
Northwest

NATIONAL LABORATORY

SODA Synthesizer: Frontend (SODA-Opt)

« SODA-Opt: Search, Outline, Dispatch, Accelerate frontend optimizer :_Er&;r;fsaago}(_f""g_:

"generates" the SODA High—LeveI IR i MLIR: Linalg and Affine Dialects i

| v |

« Employs and embraces the MLIR framework [ searcn & outine ke tuncons |
[

= Used in TensorFlow, TFRT, ONNX-MLIR, NPComp, others i MLIRandSZDADiaIects i

= Several architecture independent dialects (Linalg, Affine, SCF) and optimizations | v |

. ) B ] . | Isolate Kernel & Host Code |

* Interfaces with high-level ML frameworks through MLIR “bridges” (e.g., |m—me——=—r)

. . . | MLIR Kernel MLIR Host |

libraries, rewriters) Lcon coe ||

| : !

* Defines the SODA MLIR dialect and related compiler passes to: | honevel || Smmome |

optimization Runtime

= |dentify dataflow segments for hardware generation | 3 . 3 |

. o . . . I I

= Perform high-level optimizations (dataflow transformations, data-level and || Low-LevelR || Low-LevelR |

| I

[ |

[ |

instruction-level parallelism extraction)

Translate to LLVM IR

= Generates interfacing code and runtime calls for microcontroller

.
: To: Backend :rTo: LLVM Tools |
_________________ -

SODA-OPT: System Overview

[N. Bohm Agostini, et al, "SODA-OPT: an MLIR-based flow for co-design and high-level synthesis,” CF 2022 - Best Poster Award]



nortwest  SODA-Opt Optimization Passes

NATIONAL LABORATORY

* The SODA-Opt optimization passes:

Single basic block containing the compute
intensive part of the kernel
More freedom to schedule operations

Increased instruction-level parallelism
Schedule independent arithmetic operations on
the same cycle when their inputs are available

Increased data-level parallelism
Schedule operations into different memory units
on the same cycle

{
1

Reduce expensive accesses to external memory

Avoid unnecessary reads from kernel arguments 4

Structural
Tiling

Unrolling

Memory

Temporary Buffer
Allocation

Alloca Buffer
Promotion

Avoid Redundancy
and Promote Reuse

Scalar Replacement
of Aggregates

Early Alias Analysis \

Outlining N

Avoid Unnecessary

Operations
Dead Code 2
Elimination
Common /
Sub-expression

Elimination

Reuse read results, aggregate on scalars
Save scalar values loaded from memory and
intermediate results in registers rather than

performing repeated memory accesses

Early alias analysis
% Schedule memory operations independently on
regions that don't alias

Remove redundant or unnecessary operations
Avoid wasting resources




o

nortwest  SODA Synthesizer: HLS Backend (Bambu)

NATIONAL LABORATORY

* Backend: optimized low-level IR inputs to generate hardware descriptions

Analysis & low-level optimization
of the accelerators — T
« PandA-Bambu: open-source state-of-the-art high-level synthesis (HLS) Allocation S
tool as a backend =B | s
Bindi
» Key features: parallel accelerator designs, modular HLS, and ASIC support =
* The HLS backend: v

Modules (RTL IR)

= Provides automated testing and verification of the generated designs 7
= Provides the necessary generality to deal with novel algorithms Systemfmum

= Provides the opportunities for specialized and optimized templates by recognizing

o (o . Verilog and Testbench jilfl}
specific computational patterns

« SODA approach relies on progressive lowerings of compiler IRs, rather — _________ f_ ________
than rewriting annotated C/C++ | TochpDesign

Bambu HLS

[F. Ferrandi, et al, Invited: "“Bambu: an Open-Source Research Framework for the High-Level Synthesis of Complex Applications,” DAC 2027]




o

NATIONAL LABORATORY

nortwest  SODA Synthesizer: Targets

« Supports different target technologies (FPGA,
CGRA, ASIC) for actual generated designs

* ASIC targets:

= Commercial Tools (Synopsys Design Compiler with
Global Foundries 12/14 nm cells)

= OpenROAD suite (FreePDK 45nm and ASAP 7nm cell
libraries)

* Backends' resources characterized for the target
technology:

» Eucalyptus tool in Bambu, allows driving hardware
synthesis algorithms to optimize for area, latency, etc.

= OpenCGRA: evaluation of the results, metrics for the
design space exploration

SODAlib

Component Cell Library
Verilog File Yosys (Liberty)

Gate Level
Verilog

OpenROAD
(Floorplanning
and
Placement)

Area and Latency
Estimation

SODA characterization flow. The characterization
flow can be extended to synthesize HLS generated
designs, or used to estimate their area-latency-power
profiles to drive the Design Space Exploration engine



o

Pacific

Nortwest  From Python to optimized ASIC

NATIONAL LABORATORY

g B,
LeNet architecture § - [4-' |
o 8‘ L 7} ' o
C3: f. maps 16@10x10 g_ | B 8 vl N sy wig
INPUT C1: feature maps S4: f. maps 16@5x5 o ! =2
32x32 6@28x28 S2: f. maps r r C5: layer F6: | OUTPUT |- :
6@14x14 120 a1 e o TR Y
r r {= N
[ . (7F S
< |
E : 8 .g W ~ m wilf ¥
8| v ‘6.
Full connection Gaussian connections 2 : \ O j
Convolutions Subsampling Convolutions  Subsampling Full connection B —
™ CONVO1 BIASO2 RELUO3 | CONV04! BIASO5 RELUO6
. !
(‘
]
: - Y- Lo Careful selection of tile size NoGpt
* LeNet architecture: each of the operators are 5= i
hesized | E = ! enables accelerator reuse
synthesized to an ASIC accelerator gl bymultiple operators il"
« SODA-Opt optimized accelerators are bigger, 8 ;3 |+ 4xthe area, 15x speedup |
T ically sel
but also much faster P : i Autom:tlgal y selected and |\ )
= EEHRIAE Oum 1240 pm
: L 1
\ ? = J




o

Pacific

nothwest  ASIC Generation: Linear Algebra Kernels

NATIONAL LABORATORY

EXECUTION TIME (IN CLOCK CYCLES) FOR POLYBENCH KERNELS WITH ASIC TARGET - OPENPDK 45NM @ 500MHzZ.
SPEEDUP SHOWN IN PARENTHESIS.

Opt. Strategy No High Level Opts. SODA-OPT Pipeline

Kernel Size 2 4 8 16 2 4 8 16
three_mm 388 3,087 25,010 211,298 47 (8.3x) 82 (37.6x) 656 (38.1x) 5,248 (40.3x)
two_mm 315 2475 20,258 167,490 52 (6.1x) 86 (28.8x) 688 (29.4x) 5,504 (30.4x)
gemm 186 1,446 11,922 95,376 31 (6.0x) 56 (25.8x) 448 (26.6x) 3,584 (26.6x)
doitgen 277 4,282 67,666 999,698 29 (9.6x) 258 (16.6x) 2,064 (32.8x) 16,512 (60.5x)
bicg 129 518 2,058 8,482 26 (5.0x) 43 (12.0x) 85 (24.2x) 340 (24.9x)
mvt 130 514 2,051 8,195 26 (5.0x) 45 (11.4x) 89 (23.0x) 356 (23.0x)
gemver 283 1,118 4,393 17,617 77 3.7x) 106 (10.5x) 424 (10.4x) 1,696 (10.4x)
gesummyv 162 578 2,178 8,722 39 (4.2x) 56 (10.3x) 105 (20.7x) 420 (20.8x)
atax 132 523 2,067 8,227 44 (3.0x) 73 (1.2x) 292 (1.1x) 1,168 (7.0x)
syr2k 186 1,310 9,018 68,986 38 (4.9x) 567 (2.3x) 3,033 (3.0x) 24,264 (2.8x)
syrk 142 990 6,714 49,250 31 (4.6x) 453 (2.2x) 2,581 (2.6x) 20,648 (2.4x)
trmm 46 332 4,402 34,018 24 (1.9x) 532 (1.0x) 4,402 (1.0x) 34,018 (1.0x)

« Results for 14 linear algebra kernels from PolyBench demonstrates the effectiveness of the end-to-end flow
and high-level optimizations

« The SODA Synthesizer generates ASICs for all the provided kernels

* In most cases, SODA-Opt optimization pipeline provide significant speedups




o

Pacific

nortwest  Research Opportunities: System-Level Design

NATIONAL LABORATORY

* Integrating with open-source fast prototyping
platforms: Columbia University Embedded
Scalable Platform (ESP) =5 |

Design &% Integration

» SODA-Opt olc } oS )

/_A—\\
f = b~ A

his 4 ml &b S -

O PyTorch A4 _ = accelerators

R
HLS el SOC

P= processor cores
Stratus HLS |:||:||:| ‘HE \\__//

Vivado HLS
= MLIR is naturally modular and hierarchical Catoput His 1 B2 HW IP Library

Rapid

= Can lower to multiple targets, including runtimes < Prototyping
INUX apps —~

cHise| RTL 53 S .

== Design »~ devicedrivers . goC o~

e Flows W SW Build <
= Provides a fully open-source HLS backend for ESP } : \/

SW Library

kR

— T

« Bambu

* Can enable end-to-end fast prototyping from
algorithmic concept to system implementation

[P. Mantovani, et al.,: "Agile SoC Development with Open ESP,” ICCAD 2020]



*‘5’/ Research Opportunities: Dataflow
Pacific

Northwest ~ architecture

NATIONAL LABORATORY

| CPU | I Memory |
func @main(...) { Fline : I I
(Placeholder:{) ] . func @main{...} { System Bus
Zl.inalg.generic #reshape_trait ... { soda.launch_func @df0_reshape::@f args(...)
bbq(---) : ) soda.launch_func Q@dfl_conv2d::@f args(...) I
Reshape linalg.yield %arg2 : soda.launch_func @df2_add::@f args(...) I Reshape ” Conv2D “ Add ” Relu I
} oda.launch_func Q@df3_relu::Q@f args(...)
linalg.generic #conv2d_trait ... { etur . .
d:‘a <3(23)> B0 (- 0} 3 (d) Centralized architecture
shape %7 = arith.mulf %arg2, %arg3 : f
$8 = arith.addf %argd, %7 : f32 soda.func Gf(...) {
linalg.yield %8 : f linalg.generic #reshape_trait // ... CPU Memor
Y
} soda.return I I
linalg.generic #bias_trait ... { }
W (32x1x5x5) "bb0(...): System Bus
$7 = arith.addf %arg2, %arg3 : £32 soda.func @f(...) {
linalg.yield %7 : £32 linalg.generic #conv2d_trait // ... I
} soda.return
linalg.generic #relu_trait ... { } Distributed Controller
“bb0(...): I 3
$7 = arith.cmpf olt, %arg2, %cst_0 : £32 soda.func Gf(...) {
%8 = select %7, %cst_0, %arg2 : 32 linalg.generic #bias_trait C Reshape
$9 = arith.cmpf olt, %cst, %arg2 : f32 }
$10 = select %9, %cst, %8 : ) Add Relu
linalg.yield %10 : £32 soda.func @f(...) {
} linalg.generic #relu_trait | . Conv2D
(PlaCEh()lderI‘l ) return ] soda.return Datapath
}
. . .o St i Shared Memory
(a) Input model (b) MLIR lowering (simplified) (c) After search and outlining (sim
plified) (e) Dataflow architecture

« SODA provides a methodology to translate outlined kernels in two architectures:
= A centralized architecture with a microprocessor
= A dynamically scheduled, automatically generated, dataflow architecture




‘?{/ Research Opportunities: Profile-driven
Pacific

Northwest Synt h ESiS

NATIONAL LABORATORY

‘ Compiler infrastructure

L e  E—

« Compiler infrastructure: R Front-end R |
. : : : : - 3 il
Provides ecosystem for static & dynamic analysis Ll m—— Viddlo-ond S. Anayss & Opt. =

* Dynamic analysis possible by automated I e e e
. . L. Instrumentation - Instrumentation -
iInstrumentation and profiling — v 1 Backend —— |

‘ Assembly gen. ‘ ‘ Assembly gen. “

= E.g, capturing data-dependent patterns and Sasaciuce LB DU B Missica Ll
memory transactions

= |nformation can be fed back to the synthesis engine |
to facilitate design space exploration of the memory "™ *| g e A . T
and the overall architecture design '

Estimation

[A. Tumeo, et al,, "Architecture independent integrated early performance and energy estimation,” IGSC
20171

Y Model Power/Performance



‘ﬁf/ Research Opportunities: Effective memory
Pacific

Nortwest  hierarchy & interfaces

NATIONAL LABORATORY

« Compiler-based instrumentation can be used to capture dynamic memory traces
= Synthesis engine can use the information to balance computational intensity and memory latency

* Tolerate memory access latencies
= Manage computational intensity: change scheduling algorithms
= Optimize memory hierarchy & interfaces

« Optimizing for memory accesses
= Design effective memory hierarchy (e.g., include data buffers, scratchpads, prefetch engines)

= Compiler optimizations for data restructuring (e.g., array partitioning, matrix transpose) to effectively
utilize underlying memory hierarchy

= Hierarchical memory interface that routes signals from different accelerators to a multi-port/multi-bank
shared memory to maximize the available bandwidth utilization



Pacific

Northwest  Conclusions

NATIONAL LABORATORY

« SODA: end-to-end compiler-based toolchain for generating domain-specific accelerators
= Modular, multi-level, and extensible

Completely based on interoperating open-source technologies

Can target reconfigurable architectures (e.g., FPGAs, CGRAs) as well as ASICs

Considers system-level implications

Enables automated design space exploration and agile hardware design

« The SODA Synthesizer provides a no-human-in-the-loop toolchain from algorithmic
formulation to hardware implementation for complex workloads

SODA Tutorial: DATE 2022 SODA Docker Image SODA-Opt Panda-Bambu HLS (v 0.9.7)




o

Pacific

northwest  Acknowledgements

NATIONAL LABORATORY

 This work was partially supported by:

= The US DOE Office of Science project: "Advanced Memory to support Artificial Intelligence for Science” at
PNNL

= The "Software Defined Architectures for Data Analytics” (SO(DA)"2) project under PNNL Data-Model
Convergence Laboratory Directed Research & Development

= The "Software Defined Accelerators from Learning Tools Environment” (SODALITE) project under the
DARPA Real Time Machine Learning (RTML) program




3.7

-0°
/’O
® e A" !
P
>

Pacific
Northwest

NATIONAL LABORATORY

1.7

4.14

Thank you!

121.5

17.9

7.8

6.184

16



