
Scalable Assurance via Verifiable Hardware-Software Contracts

Yao Hsiao1, Dominic P. Mulligan2, Nikos Nikoleris2,
Gustavo Petri2, Caroline Trippel1

1Stanford University, 2ARM Research

Hardware-software contracts expose hardware correctness and
security guarantees to software

2

Hardware

single core

reg
file

memory

Instruction Set
Architecture (ISA)1Contracts

Software

Hardware-software contracts expose hardware correctness and
security guarantees to software

3

x86-tso: Forbids reordering writes
W x → W y in program order

C11àPower, PLDI’12
C11àx86, POPL’11
C11àARMv7, Sewell+ ‘16
C11àARMv8, Sewell+ ’16
Java->Power ECOOP’15
Javaàx86, ECOOP’15

Software

Hardware C0

memory

C1 Cn...

Memory Consistency
Model (MCM)

single core

reg
file

memory

2
Instruction Set

Architecture (ISA)1Contracts

Hardware-software contracts expose hardware correctness and
security guarantees to software

4

Software

Hardware C0

memory

C1 Cn...

Memory Consistency
Model (MCM)

single core

reg
file

memory

reg
file

L1 cache

T0 T1 Tn...

BTB
BHT LFB

SWB

Security Contracts

Constant-time programming: Arithmetic instructions
except division are constant time

2 3

Spetector, S&P’20
Pitchfork, PLDI’20

Blade, POPL’21
Bisec/Haunted, NDSS’21

Clou, ISCA’22

Instruction Set
Architecture (ISA)1Contracts

Hardware-assurance challenge: A gap exists between hardware-
software contracts and the RTL they abstract

5

Verilog design

Hardware C0

memory

C1 Cn...

Memory Consistency
Model (MCM)

single core

reg
file

memory

reg
file

L1 cache

T0 T1 Tn...

BTB
BHT LFB

SWB

Security Contracts2 3
Instruction Set

Architecture (ISA)1Contracts

Verilog design

Software

Can we synthesize formal hardware-software contracts from RTL?

6

Verilog design

rtl2μspec1

1Hsiao et al. “Synthesizing Formal Models of Hardware from RTL for Efficient Verification of Memory Model Implementations.” MICRO’21

§ Prior work (rtl2μspec): Synthesizing
abstract formal models of RTL to support
MCM verification [Hsiao+, MICRO’21]

§ Current work (TrasnsmitSynth): Extending
rtl2μspec to synthesize both MCM and
security contracts

Hardware C0

memory

C1 Cn...

Memory Consistency
Model (MCM)

single core

reg
file

memory

reg
file

L1 cache

T0 T1 Tn...

BTB
BHT LFB

SWB

Security Contracts2 3
Instruction Set

Architecture (ISA)1Contracts

Software

Check Tools1Check Tools1

7

Check Tools: Automated tools for conducting formal verification of
hardware memory model implementations

1http://check.cs.princeton.edu

μspec models

Verilog design

μspec models

Axiom Ld_exe_path:
forall microops i0,
IsAnyRead i0 ⇒ AddEdges
[((i0, IF), (i0, DX))
((i0, DX), (i0, WB))
....]
Axiom “st_exe_path:
......

ISA MCM

manualmanualrtl2μspec

Ordering rule for hardware

IF

DX

mem_WB

i1
PO

C0
i2 i3

PO

C1

regfile_WB

i0

IF

arbiter

mem

DX

WB

IF

DX

WB

IF

DX

WB

IF

DX

WB

RISC-V multi-V-scale1

8

Microarchitectural happens-before (μhb) analysis

1Albert Magyar. 2016. A Verilog implementation of the RISC-V Z-scale microprocessor. https://github.com/ucb-bar/vscale.

Core 0 Core 1
(i0) W[x] = 1; (i2) R[y] = 1;
(i1) W[y] = 1; (i3) R[x] = 0;

Forbidden on Sequential Consistency (SC)

i0

IF

DX

mem_WB

i1
PO

C0
i2 i3

PO

C1

regfile_WB

μhb analysis: Hardware locations

IF

arbiter

mem

DX

WB

IF

DX

WB

IF

DX

WB

IF

DX

WB

RISC-V multi-V-scale

9

Core 0 Core 1
(i0) W[x] = 1; (i2) R[y] = 1;
(i1) W[y] = 1; (i3) R[x] = 0;

Forbidden on SC

hardware state elements

i0

IF

DX

mem_WB

i1
PO

C0
i2 i3

PO

C1

regfile_WB

μhb analysis: Instruction execution paths

10

Core 0 Core 1
(i0) W[x] = 1; (i2) R[y] = 1;
(i1) W[y] = 1; (i3) R[x] = 0;

Forbidden on SC

IF

arbiter

mem

DX

WB

IF

DX

WB

IF

DX

WB

IF

DX

WB

RISC-V multi-V-scale

execution path

i0 i1
PO

C0
i2 i3

PO

C1

μhb analysis: μhb nodes a.k.a. hardware events

RISC-V multi-V-scale

μhb nodes: microarchitectural events,
<instruction, state element(s)> pair

IF

DX

mem_WB

regfile_WB

11

IF

arbiter

mem

DX

WB

IF

DX

WB

IF

DX

WB

IF

DX

WB

Forbidden on SCCore 0 Core 1
(i0) W[x] = 1; (i2) R[y] = 1;
(i1) W[y] = 1; (i3) R[x] = 0;

i0 i1
PO

C0
i2 i3

PO

C1

μhb analysis: μhb edges a.k.a. happens-before relations

RISC-V multi-V-scale

IF

DX

mem_WB

regfile_WB

12

IF

arbiter

mem

DX

WB

IF

DX

WB

IF

DX

WB

IF

DX

WB

Forbidden on SCCore 0 Core 1
(i0) W[x] = 1; (i2) R[y] = 1;
(i1) W[y] = 1; (i3) R[x] = 0;

μhb edges: happens-before
relationships between nodes

i0 i1
C0

i2 i3
C1

Reasoning about execution observability with μhb analysis

RISC-V multi-V-scale

IF

DX

mem_WB

regfile_WB

IF

arbiter

mem

DX

WB

IF

DX

WB

IF

DX

WB

IF

DX

WB

Cyclic μhb graph ⟷ Execution is not
observable on the target hardware

PO PO

13

Core 0 Core 1
(i0) W[x] = 1; (i2) R[y] = 1;
(i1) W[y] = 1; (i3) R[x] = 0;

Forbidden on SC

Check Tools: search all ways that a program may
execute on hardware, according to μspec model.

i0 i1
C0

i2 i3
C1

Microarchitectural specifications a.k.a. μspec models

RISC-V multi-V-scale

IF

DX

mem_WB

regfile_WB

IF

arbiter

mem

DX

WB

IF

DX

WB

IF

DX

WB

IF

DX

WB

PO PO
IF

DX

mem_WB

regfile_WB

μspec model of a microarchitecture specifies the space
of all possible μhb graphs—i.e., the space of all
possible hardware-specific program executions.

14

Core 0 Core 1
(i0) W[x] = 1; (i2) R[y] = 1;
(i1) W[y] = 1; (i3) R[x] = 0;

μspec models

Axiom Ld_exe_path:
forall microops i0,
IsAnyRead i0 ⇒ AddEdges [
((i0, IF), (i0, DX)),
((i0, DX), (i0, WB)),
....]
....

Manually written L

wen

inst_DX

DX WBIF

wa
regfile

PC
Mux

mem

(System)Verilog design

15

sw_in_WB

CLK
A

$dff Q

inst_DX

CLK
A

$dff Q

WEN
WA
WD

$mem RD

memwdata

CLK
A

$dff Q

Netlist a.k.a. control- and data-flow graph

__
_

__
_

__

__
_

__
_

__

__
_

__
_

__

__
_

__
_

__

__
_

__
_

__

__
_

__
_

__
......

Over-approximation of all axioms

JasperGold

Automated synthesis of μspec models from RTL with rtl2μspec
[Hsiao+, MICRO’21]

......
__
_

__
_

__

✓ __
_

__
_

__
❌

__
_

__
_

__
❌

__
_

__
_

__
✓ __

_
__
_

__
✓__

_
__
_

__
❌

Proven set of axioms

μspec......

Open-source RISC-V
multi-V-scale case
study: 6.84 mins serial
proof time w/120 SVA
properties evaluated
(> 780x performance
improvement over prior
work [Manerakr+
MICRO’17])

SVA property
embedding

16

Hardware security verification with μspec models [Trippel+, MICRO’18]

⓵ LW [base+secret]
⓶ LW [y]

1. Load cache
miss path
(y != base+secret)

tag vld data

base+secret 1 ...

y 1

miss
LW y

L1_write

rob_wb

IF

...

regfileA transmit instruction (or transmitter) is an instruction
which modulates hardware resources differently as a
function of its operands, results, or data-at-rest in a
microarchitecture, resulting in leakage.

L1 cache write event

L1_write

17

⓵ LW [base+secret]
⓶ LW [y]

1. Load cache
miss path
(y != base+secret)

tag vld data

base+secret 1 ...

y 1

miss
LW y

rob_wb

IF

...

regfile

hit
LW yLW y

......

tag vld data

base+secret 1 ...

- - -

2. Load cache
hit path
(y == base+secret)

L1_write

rob_wb

IF

regfile

L1_write

A transmit instruction (or transmitter) is an instruction
which modulates hardware resources differently as a
function of its operands, results, or data-at-rest in a
microarchitecture, resulting in leakage.

Hardware security verification with μspec models [Trippel+, MICRO’18]

NO 1 cache write event

L1_write

18

Key insight: If an instruction is a transmitter, it can instantiate
more than one execution path in a μhb graph

⓵ LW [base+secret]
⓶ LW [y]

miss
LW y

rob_wb

IF

...

regfile

hit
LW ySW y

......

L1_write

rob_wb

IF

regfile

L1_write

Axiom Ld_exe_path:
forall microops i0,
IsAnyRead i0 ⇒ AddEdges [
((i0, IF), (i0, DX)),
((i0, L1_write), (i0, rob_wb),
....] // miss_path
⨁
AddEdges [
((i0, IF), (i0, DX)),
((i0, IF), (i0, rob_wb)),
....] // hit path

19

TransmitSynth: Automated synthesis of security contracts from
RTL via identification of transmit instructions

ADD

...

...

SUB LW

...

.....

....

Enumerate all
execution paths
for an instruction

rtl2μspec

Key limitation of rtl2μspec: the single
execution path assumption.
▪ Each instruction type updates the

same state elements exactly once
every time it executes.

▪ rtl2μspec cannot recognize:
› “Sometimes-updated” flops
› “Repeatedly-updated” flopsTransmitSynth

Resolving the single execution path assumption: recognizing
sometimes-updated flops with write-enable analysis

20

miss
LW y

...

hit
LW ySW y

......SVA property: Does there exist an
execution of LW that induces a value
change on L1_line[0].data?

JasperGold

✓

Verilog
Conclude: LW always
updates L1_line[0].data

...

LW y

rob_wb

IF

regfile

rob_wb

IF

regfile

L1_write

yes

Resolving the single execution path assumption: recognizing
sometimes-updated flops with write-enable analysis

21

JasperGoldVerilog

SVA property: Does the execution of LW
always/ever cause L1_line[0].data’s
write-enable to be asserted?

SVA property: Does there exist an
execution of LW that induces a value
change on L1_line[0].data?

Challenge: updating a flip-flop
does not imply a value change.

Solution: conduct static analysis of RTL
netlist to derive write enables for flip-flops.

Resolving the single execution path assumption: recognizing
sometimes-updated flops with write-enable analysis

22

JasperGoldVerilog

ID

reg
file

IF

PC
Mux

I$

issue

ROB

ALU

EX

CSR buffer

branch unit

LSU

Mult/Serial_Div

mem

res_q

DIV op

i2

i4

Instn

PL_ID

PL_div

i1

1Zaruba et al. https://github.com/openhwgroup/cva6

Open-source CVA6 processor1

PL_IF

i3

Performing Location: A design region which consists of an instruction identifier, optional
instruction tracking logic, and a set of datapath registers. For an instruction to update a
particular datapath register it must be residing in its associated performing location.

SVA property: Does the execution of
DIV always/ever cause res_q’s write
enable to be asserted when DIV is at
PL_DIV ?

Resolving the single execution path assumption: recognizing
repeatedly-updated flops with performing location (PL)

23

SVA property: Does the execution of
DIV always/ever cause res_q’s write
enable to be asserted?

JasperGoldVerilog

ID

reg
file

IF

PC
Mux

I$

issue

ROB

ALU

EX

CSR buffer

branch unit

LSU

Mult/Serial_Div

mem

res_q

DIV op

i2

i4

Instn

PL_ID

PL_div

i1

1Zaruba et al. https://github.com/openhwgroup/cva6

Open-source CVA6 processor1

IF

PC
Mux

I$

PL_IF

i3

SVA property: Does the execution of
DIV always/ever cause res_q’s write
enable to be asserted when DIV is at
PL_DIV ?

SVA property: Does the execution of
DIV always/ever cause res_q’s write
enable to be asserted? i3

PC_IF

DIV

rob_wb

IF

regfile

res_q

....

✓

exe_n
DIV

....

res_q

res_q

Resolving the single execution path assumption: recognizing
repeatedly-updated flops with staying properties

24

SVA property 2: Does
the execution of DIV
stay at PL_DIV for 2
cycles? 3 cycles? n
cycles?

JasperGoldVerilog

ID

reg
file

IF

PC
Mux

I$

issue

ROB

ALU

EX

CSR buffer

branch unit

LSU

Mult/Serial_Div

mem

res_q

i4

Instn

PL_div

i1

1Zaruba et al. https://github.com/openhwgroup/cva6

Open-source CVA6 processor1

exe_n
DIV

....

PL_DIV

PL_DIV.
exit

rob_wb

IF

{1, 2
...}

Performing
locations

25

Synthesize coarse-grained execution paths: a set of visited
performing locations + a partial order in which they are visited

IF

ID

issue

muldiv.IDLE_DIV

muldiv.DIV_DIV

muldiv.DIV_FIN

muldiv.FIN_IDLE

muldiv.DIV_IDLE

lsq.enq

rob.enq

rob.fin

rob.deq

Does there exist an execution of
DIV which visits the IF, ID, and
lsq.enq performing locations only?

set 4095

....

JasperGoldVerilog

set jset1 set2 set3

....

set i

....

Pe
rf

or
m

in
g

lo
ca

tio
ns

26

Synthesize coarse-grained execution paths: a set of visited
performing locations + a partial order in which they are visited

IF

ID

issue

muldiv.IDLE_DIV

muldiv.DIV_DIV

muldiv.DIV_FIN

muldiv.FIN_IDLE

muldiv.DIV_IDLE

lsq.enq

rob.enq

rob.fin

rob.deq

set1 set2 set3

....

set 2048 set 4096

....

Sets w/ lsq.enq

Does there exists an
execution of DIV
reaching lsq.enq?

Sets w/o lsq.enq

❌

JasperGoldVerilogPe
rf

or
m

in
g

lo
ca

tio
ns

27

Synthesize coarse-grained execution paths: a set of visited
performing locations + a partial order in which they are visited

IF

ID

issue

muldiv.IDLE_DIV

muldiv.DIV_DIV

muldiv.DIV_FIN

muldiv.FIN_IDLE

muldiv.DIV_IDLE

lsq.enq

rob.enq

rob.fin

rob.deq

set 2048 set 4096

........
....

❌

Verilog

❌
❌

Pe
rf

or
m

in
g

lo
ca

tio
ns

set 4096

....

❌
❌

❌

28

Synthesize coarse-grained execution paths: a set of visited
performing locations + a partial order in which they are visited

IF

ID

issue

muldiv.IDLE_DIV

muldiv.DIV_DIV

muldiv.DIV_FIN

muldiv.FIN_IDLE

muldiv.DIV_IDLE

lsq.enq

rob.enq

rob.fin

rob.deq

set1 set2 set3

....

JasperGold

Does there exists an execution of DIV
reaching all but muldiv.DIV_IDLE and
lsq.enq only?

Verilog

✓ ✓
set7
✓❌

Pe
rf

or
m

in
g

lo
ca

tio
ns

29

Synthesize coarse-grained execution paths: a set of visited
performing locations + a partial order in which they are visited

IF

ID

issue

muldiv.IDLE_DIV

muldiv.DIV_DIV

set7set1 set2
✓ ✓ ✓

JasperGoldVerilog

✓Can DIV stay at muldiv.DIV_DIV
for 2 consecutive cycles?

......

Can DIV stay at muldiv.DIV_DIV
for 65 consecutive cycles?

Can DIV stay at muldiv.DIV_DIV
for 3 consecutive cycles? ✓

❌

{1,2, 64}

muldiv.DIV_FIN

muldiv.FIN_IDLE

muldiv.DIV_IDLE

lsq.enq

rob.enq

rob.fin

rob.deq

{0,1, 63}

Pe
rf

or
m

in
g

lo
ca

tio
ns

muldiv.DIV_DIV.exit

30

Synthesize coarse-grained execution paths: a set of visited
performing locations + a partial order in which they are visited

IF

ID

issue

muldiv.IDLE_DIV

muldiv.DIV_DIV

set7set1 set2

muldiv.DIV_DIV.exit

muldiv.DIV_FIN

muldiv.FIN_IDLE

muldiv.DIV_IDLE

lsq.enq

rob.enq

rob.fin

rob.deq

{0, 1,
... 63}{0, 1,

... 63}

JasperGoldVerilog

SVA property: For an ordered
pair of nodes (u, v), does DIV
always reach u before it
reaches v?

Pe
rf

or
m

in
g

lo
ca

tio
ns

31

Open-source RISC-V CVA6 processor case study with proof-of-
concept TransmitSynth methodology and tool

Frontend ID Issue Exe Commit

▪ RV64I, M, A, and C
▪ Single in-order issue
▪ Out-of-order write-

backs
▪ Speculation
▪ DIV executes variably as

function of its operands

32

Discovering Transmitters with
TransmitSynth

{0, 1,
... 63}

{2} {2}{0, 1,
... 67}

IF

ID

issue

muldiv.IDLE_DIV

muldiv.DIV_DIV(1-64)

muldiv.DIV_DIV.exit

muldiv.DIV_FIN

muldiv.FIN_IDLE

muldiv.DIV_IDLE

rob.enq(1-68)

rob.enq.exit

rob.fin

rob.deq

▪ DIV has a total of 66 execution
paths!

▪ Runtime to synthesize paths with
TransmitSynth: 96 minutes of
serial (parallelizable) proof time

▪ Note that CVA6 has 4.54x more
flops and 16.2x more gates than
the multi-V-scale

33

Ongoing work

set 1 set 2 set 3

▪ What information is leaked?
› What caues the different execution
› Dataflow behavior on some performing locations

DIV
exe1

IF

ID

issue

LSU

muldiv.
IDLE_DIV

muldiv.
DIV_DIV

muldiv.
DIV_FIN

DIV
exe2

▪ Finer-grained execution path
› What are updated during a performing location

IDIF issue EX

res_q

reg
file

PC
Mux

I$ ROB

ALU

CSR buffer

branch unit

LSU

Mult/Div

mem
{0, 1,
.. 63}

34

Conclusions: Automated synthesis of hardware-
software contracts from RTL is feasible

set 1 set 2 set 3

▪ rtl2μspec1: Automated synthesis of
μspec models from RTL
› Synthesized a μspec model of

the open-source RISC-V multi-V-
scale processor in 6.84 minutes
serial proof time

Verilog design

TransmitSynth

DIV
exe1

IF

ID

issue

LSU

muldiv.
IDLE_DIV
muldiv.
DIV_DIV
muldiv.
DIV_FIN

DIV
exe2

{0, 1,
.. 63}▪ TransmitSynth: Automated synthesis

of security contracts from RTL via
identification of transmit instructions
› Synthesized 66 paths for DIV

instructions on the open-source
RISC-V CVA6 processor in 96
minutes serial proof time

SW

IF

DX

regfile_WB

LW

mem_WB

Verilog design

rtl2μspec

1https://github.com/yaohsiaopid/rtl2uspec

Thanks!
yaohsiao@stanford.edu

This presentation and recording belong to the authors.
No distribution is allowed without the authors' permission.

35

mailto:yaohsiao@stanford.edu

