Scalable Assurance via Verifiable Hardware-Software Contracts

Yao Hsiaol, Dominic P. Mulligan?, Nikos Nikoleris?,
Gustavo Petri?, Caroline Trippell

1Stanford University, 2ARM Research

Stanford University

Hardware-software contracts expose hardware correctness and
security guarantees to software

Software ‘

Instruction Set

aArchitecture (isA) —— ———~— - ————————

reg
file
single core

Hardware memory

2 Stanford University

Hardware-software contracts expose hardware correctness and
security guarantees to software

Software ‘ ‘

Instruction Set Memory Consistency
0Architecture (ISA) — ‘g Model (MCM) — — — — — — — — — — ——
I L1
Hardware ;?Ig memory _Cg{ (il
ile
single core | memory |

Cl11->Power, PLDI'12
C11->x86, POPL’11
C11-2>ARMv7, Sewell+ ‘16
C11->ARMVS, Sewell+’16
Java->Power ECOOP’15
Java—>x86, ECOOP’15

x86-tso: Forbids reordering writes
W x - Wy in program order

3 Stanford University

Hardware-software contracts expose hardware correctness and
security guarantees to software

Software ‘ ‘

Instruction Set Memory Consistency _
O acchitecture 1s8) — @ Model (Mcw) — — —@) Security Contracts — —
L1 - L]
TO T1 [Tn |
Hardware €€ | | memory C0 (51 I_{‘ n

file ! :

single core | memory | reg | C_BIB__] [SwWB]

fie | T e oeece]

Spetector, S&P’20
Pitchfork, PLDI"20 Constant-time programming: Arithmetic instructions

Blade, POPL'21 except division are constant time

Bisec/Haunted, NDSS’21
Clou, ISCA’22

4 Stanford University

Hardware-assurance challenge: A gap exists between hardware-
software contracts and the RTL they abstract

Software ‘ ‘

Instruction Set Memory Consistency

I @ Architecture (58) — @ Model (Mcwm) — — —@) Security Contracts — —
L1 L1 L]
T0 T1 T
Hardware €8 | | memory (il I_{‘
file v
single core memory | reg | C_BIB__] [SwWB]
| | T Leeche
org\o
5"
AMAMA
[*]
R i

5 Stanford University

Can we synthesize formal hardware-software contracts from RTL?

Software ‘ ‘

Instruction Set Memory Consistency

I @ Architecture (58) — @ Model (Mcwm) — — —@) Security Contracts — —
- L1 L]
TO T1 Tn
Hardware €8 | | memory 0 (il I_{‘ [0 |
file]
single core | memory | reg | C_BIB__] [SwWB]
fie | Corr) e ceche]
= Prior work (rtl2pspec): Synthesizing \ /

abstract formal models of RTL to support
MCM verification [Hsiao+, MICRO’21] @\/4[8rt|2uspec1]

= Current work (TrasnsmitSynth): Extending

rtl2uspec to synthesize both MICM and EV i0q desi
security contracts = verliog design

1Hsiao et al. “Synthesizing Formal Models of Hardware from RTL for Efficient Verification of Memory Model Implementations.” MICRO’21

Check Tools: Automated tools for conducting formal verification of
hardware memory model implementations

. . Ordering rule for hardware
ISA MCM

¢ 4 Axiom Ld_exe path:
QCheCk Tools? forall microops i@,

> 4 IsAnyRead i@ = AddEdges
uspec models [((ie, IF), (ie, DX))

\ 1) ((i@, DX), (i@, WB))

o]
Axiom “st_exe_ path:

8 rtl2uspec manuat

thttp://check.cs.princeton.edu 7 Stanford University

Microarchitectural happens-before (phb) analysis

Forbidden on Sequential Consistency (SC)

1

| Core © | Core —— - ”
(i0) W[x] = 1; (i2) R[y] = 1; io i1 i2 i3
(i1) W[y] = 1; (i3) R[x] = ©; o PO PO
RISC-V multi-V-scalel DX

IF IF IF IF

DX DX DX DX mem—WB

WB WB WB WB regfile_WB

arbiter
mem

'Albert Magyar. 2016. A Verilog implementation of the RISC-V Z-scale microprocessor. https://github.com/ucb-bar/vscale.

uhb analysis: Hardware locations

IF

DX

WB

mem

IF
DX

mem_WB

regfile_WB

N\

hardware state elements

9

Stanford University

uhb analysis: Instruction execution paths

Core ©
(i0) W[x] = 1; Co
io
IF
DX
IF
DX mem_WB

W8 regfile_WB /\
mem

execution path

10 Stanford University

uhb analysis: phb nodes a.k.a. hardware events

Core ©
(i0) W[x] = 1;

IF

ihb nodes: microarchitectural events,
<instruction, state element(s)> pair

11 Stanford University

uhb analysis: phb edges a.k.a. happens-before relations

Core ©

(i0) W[x] = 1; co
io

IF

IF

phb edges: happens-before
relationships between nodes

12 Stanford University

Reasoning about execution observability with phb analysis

Cyclic phb graph <> Execution is not
observable on the target hardware

13 Stanford University

Microarchitectural specifications a.k.a. puspec models

axil Manually written ®

forall microops 1i0,
IsAnyRead i@ = AddEdges |
((ie, IF), (i@, DX)),
((ie, DX), (ie, WB)),
-

Check Tools: search all ways that a program may
execute on hardware, according to puspec model.

~a

uspec models

uspec model of a microarchitecture specifies the space
of all possible phb graphs—i.e., the space of all
possible hardware-specific program executions.

14 Stanford University

Automated synthesis of pspec models from RTL with rtl2pspec
[Hsiao+, MICRO’21]

CLK
IF DX WB e i & _|
— sw_in_WB ENJ
CLK WA | $mem |RD
pC inst_DX -I.; mem » C;K $d'F'F Q A $d'F'F Q > WD
M‘u‘x regfile “ inst " Wdata mem
Netlist a.k.a. control- and data-flow graph

(System)Verilog design / \
‘ Open-source RISC-V

SVA property multi-V-scale case
embedding J J J J J J study: 6.84 mins serial
F """ proof time w/120 SVA
J Over-approximation of all axioms properties evaluated
(> 780x performance

JasperGold

improvement over prior
work [Manerakr+

MICRO’17]) /

15 Stanford University

S XX BXEEL

Proven set of axioms

Hardware security verification with pspec models [Trippel+, MICRO’18]

LW [base+secret]

LW [y]
1. Load cache tag vld | data
miss path base+secret 1
(y != base+secret) y 1

A transmit instruction (or transmitter) is an instruction
which modulates hardware resources differently as a
function of its operands, results, or data-at-rest in a
microarchitecture, resulting in leakage.

16

IF

L1 write

rob_wb

regfile

miss
LW vy

l L1cache\NHteevent]

Stanford University

Hardware security verification with pspec models [Trippel+, MICRO’18]

LW [base+secret] |
LW [y] LW y:

IF

L1_write
2. Load cache tag vld | data
hit path base+secret | 1
b wb
(y == base+secret) - _ i rob_w
regfile

[NO 1 cache write event

17 Stanford University

Key insight: If an instruction is a transmitter, it can instantiate
more than one execution path in a phb graph

LW [base+secret]
LW [y]

miss
LW y

roQ
Oy I

L1 _write | :

rob_wb

regfile

18

hit

Axiom Ld_exe path:

forall microops i0,

IsAnyRead i0 = AddEdges [
((ie, IF), (ie, DX)),

((i@, L1_write), (i@, rob_wb),
....] // miss_path

D
AddEdges [

((ie, IF), (ie, DX)),
((ie, IF), (i@, rob_wb)),
....] // hit path

Stanford University

TransmitSynth: Automated synthesis of security contracts from
RTL via identification of transmit instructions

Enumerate all
execution paths
for an instruction

Key limitation of rtl2uspec: the single
execution path assumption.

= Each instruction type updates the

ADD SUB
same state elements exactly once

‘ ‘ “ g rtl2pspec every time it executes.

8 : : = rtl2puspec cannot recognize:
: : > “Sometimes-updated” flops

[8 TransmitSynth ? “Repeatedly-updated” flops

19 Stanford University

Resolving the single execution path assumption: recognizing
sometimes-updated flops with write-enable analysis

SVA property: Does there exist an
execution of LW that induces a value

change on L1 _line[0].data? L1_write
...... $-yes
E = J Conclude: LW always pob wb
Verilog JasperGold| updates L1_Iine[0].data
regfile

20

hit
LW vy

miss
LW vy

Y

LW y

-9
i»«

Stanford University

Resolving the single execution path assumption: recognizing
sometimes-updated flops with write-enable analysis

Challenge: updating a flip-flop Solution: conduct static analysis of RTL

does not imply a value change. netlist to derive write enables for flip-flops.
SVA property: Does there exist an SVA property: Does the execution of LW
execution of LW that induces a value = always/ever cause L1_line[0].data’s
change on L1_line[0].data? write-enable to be asserted?

Verilog JasperGold

21 Stanford University

Resolving the single execution path assumption: recognizing
sometimes-updated flops with write-enable analysis

Open-source CVAG6 processor?

Instn

""" J i1

DIV op . -
Verilog JasperGold Mult/Serial_Div

/_/\ res_g |P L_d ivI
S

VA property: Does the execution of\
DIV always/ever cause res_q’s write
enable to be asserted when DIV is at PL_IF||pPL_ID
\ PL_DIV ?)

Performing Location: A design region which consists of an instruction identifier, optional
instruction tracking logic, and a set of datapath registers. For an instruction to update a
particular datapath register it must be residing in its associated performing location.

17aruba et al. https://github.com/openhwgroup/cva6 22 Stanford University

Resolving the single execution path assumption: recognizing
repeatedly-updated flops with performing location (PL)

Open-source CVAG6 processor?

Instn
exe_n
DIV DIV
, IF -
\ ? 9 .

Mult/Serial Div
‘l res_qg

PL_diﬂ
Verilog JasperGold \4 res Tid]
q res_q
S

VA property: Does the execution of
DIV always/ever cause res_q’s write
enable to be asserted when DIV is at robb

PL_DIV ? regfile
_ J kg /

23

res_q

1Zaruba et al. https://github.com/openhwgroup/cva6

Stanford University

Resolving the single execution path assumption: recognizing
repeatedly-updated flops with staying properties

Open-source CVAG6 processor?

/ \ Instn

""" exe n

C R DIV

Verilog JasperGold — IF ? i1

Mult/Serial Div

\ e res_q |PL_div|

SVA property 2: Does

the execution of DIV Performing o PL_DIV {1, 2

stay at PL_DIV for 2 locations PL_DIV. et

cycles? 3 cycles?n exit

cycles? __ rob_wb

J
\ /

1Zaruba et al. https://github.com/openhwgroup/cva6

24 Stanford University

Synthesize coarse-grained execution paths: a set of visited
performing locations + a partial order in which they are visited

Performing locations
A

IF

ID

issue
muldiv.IDLE DIV
muldiv.DIV_DIV
muldiv.DIV_FIN
muldiv.FIN_IDLE
muldiv.DIV_IDLE
1sqg.enq

rob.enq

rob.fin

rob.deq

setl

O0O00O0O0OOO0OOO0

set2

O0O0O0O0O0OO0OO0O
OO0 OO0OO0O0OO0O0O0O0O0

set3

O0O0O0O0O0 OO 0O

seti

—_\

| set ! set 4095

: ON @

O | . .

I \ Does there exist an execution of
: 1 | DIV which visits the IF, ID, and

I : Isg.enqg performing locations only?
I I

|

L L 8
- :

L CI

: O : Verilog JasperGold

I I

I I

I I

I I

I I

. - -

25 Stanford University

Synthesize coarse-grained execution paths: a set of visited
performing locations + a partial order in which they are visited

setl set2 set3 \ Setsw/Isq.enq | /%t 2048 set 4096
r| O O O , O O
ol O O O Sets w/o I% O O
issue O O O] N O O
% muldiv.IDLE_DIV O O O Does there exists an O O
e . execution of DIV
© muldiv.DIV_DIV O O O reaching Isq.enq? O O
%’D J midivorvrin] O O O O O
E mildiv.rINIDLE| O O O ‘ O
s | mudiv.oiviote | O O O i - J O = 0O
“ rFm———=T-T---—=—->-"1 = i === ==- ﬁ
g L2saenal O O O O eiog saspercold b= mx m = = = = 2 =
rob.enq O O l O O
rob.fin O O O % O O
L rob.deq \C) O / \O O/

26 Stanford University

Synthesize coarse-grained execution paths: a set of visited
performing locations + a partial order in which they are visited

-
Vset 2048) g : set 4096\
5 IF O : O
ID O I O
issue O x : O
§ muldiv.IDLE_DIV O | X O
% | muldiv.p1v p1v @ : O
O
o muldiv.DIV_FIN o - - | F-=--=--- -1 @
oo = p ——_-_ - —=-—=———— - - —-—=—=—-=—m -r=-F===-===
E muldiv.FIN_IDLE O OO I
b . |
S muldiv.DIV_IDLE —____C_Z —_Q-_Q—_-_-.-_—_-_--_—_-_—_—_-_—..—_1- _______________ |
Q 1sqg.enq ‘ |
(a . . e e e o o o o g ———t - —_ o
rob.enq O :[m]: =]_J : O
rob.fin O | O
Verilog ‘ I
L rob.deq O I O
. NS S J

27 Stanford University

Synthesize coarse-grained execution paths: a set of visited
performing locations + a partial order in which they are visited

ﬂ v X 7\ 4 l set 4096
. setl set2 set3 set7 I O
I
O O O O : 5
O O O O Does there ex!sts an execytion pf DIV
issel O O O O reacking all byjt nygldiv.DfV_IDLE and
S |muldiv.iteovi O O O O Isg.eng only? 1 O
% | muldiv.p1v p1v O : o
O
L | muldiv.DIV_FIN O Ol|l-F-—=-—-—-——" § O
a0 = I I
£ | muldiv.FIN_IDLE O O ¥ . J
S muldiv.pIv_1oLE | O L -
S -DIV_
£ Veris)é JsperGold
g_) 1sqg.enq | I
rob.enq O O O O : : O
rob.fin] O O O O : : O
- rob.deq \O O O O | | O
1 1 J

28 Stanford University

Synthesize coarse-grained execution paths: a set of visited
performing locations + a partial order in which they are visited

v 7 (.)
sg{l set? set7 // Can DIV stay at muldiv.DIV_DIV | ./
B / for 2 consecutive cycles?
* O O O AN ! /
/ e ™
O O O R Can DIV stay at muldiv.DIV_DIV | ,
) isse O O O R for 3 consecutive cycles?
. _ J
§ | mudiv.ioie oy O O O R4
© 1div.DIV_DIV
R muldiv - 8{@,1, 63}
muldiv.DIV_DIV.exit O el Can DIV stay at muldiv.DIV_DIV | 9¢
C 3 .
Z muldiv.FIN_IDLE O O ~ < | for 65 consecutive cycles?
5 | muldiv.DIV_IDLE (O
G4
o 1sq.enq ‘
D- IIIIII
rob.eng O QO O E = J ‘ {1,2, 64}
rob.fin O O O Verilog JasperGold
rob.deq O O O

29 Stanford University

Synthesize coarse-grained execution paths: a set of visited
performing locations + a partial order in which they are visited

setl set2 set7

B O O O
mn O O O SVA property: For an ordered
issie O O O pair of nodes (u, v), does DIV
" muldiv.ite v O O O always reach u before it
?
S muldiv.DIV_DIV o, 1, \reaches v
)
® |muldiv.DIV_DIV.exit 63} l
O
o ,
00 muldiv.DIV_FIN O O 0 :
é muldiv.FIN_IDLE O O DI J =
S muldiv.o1v_iote O Verilog JasperGold
g 1sg.enq
rob.enq O O O
rob.fin O O O
- rob.deqg O O O

30 Stanford University

Open-source RISC-V CVAG6 processor case study with proof-of-
concept TransmitSynth methodology and tool

Frontend ID Issue Exe Commit
Speculative Regime In-order Issue 000 WB l/-:‘-?‘(:erht | _ ‘g
| | RV64|’ M’ A’ and C |||||||| ion Queue ’TI Commit é é‘
. . . ITLB 1$ o g_—é
= Single in-order issue 7 _ |
T _L—/_ h 4 Y
. imm Re- —
= Qut-of-order write- P e o I
backs 5
CSR i S I BHT CoDmprzssed ol = ALU g
. Write 2 aien ecoder 2| e @
= Speculation - g | s T S
. epc - Regflle
= DIV executes variably as = ol Decode o M
function of its operands (:
E g
z E >
Seplgct g = Exception
AP
Frontend Backend

31 Stanford University

Discovering Transmitters with
TransmitSynth

IF

ID

issue
muldiv.IDLE DIV

= DIV has a total of 66 execution ~ "T¢*V-PTV-PTV(L-64)

paths! muldiv.DIV_DIV.exit

= Runtime to synthesize paths with nuldiv.DIV FIN
TransmitSynth: 96 minutes of
serial (parallelizable) proof time

= Note that CVA6 has 4.54x more muldiv.DIV_IDLE
flops and 16.2x more gates than rob.enq(1-68)
the multi-V-scale

muldiv.FIN_IDLE

32 Stanford University

rob.enq.exit

rob.fin

rob.deq

Ongoing work

. . . 5 DIV DIV
= What information is leaked~ oxel exe?
> What caues the different execution
. . . IF
» Dataflow behavior on some performing locations
= Finer-grained execution path ID
> What are updated during a performing location
issue
- _ Y LSU
I$ N ROB > Mult/Div v
§ —l E [res_q muldiv. C)
{0, 1,
" [50 [nen | IDLE_DIV . 63}
U . lovov Y ||
branch unit mUldiV. 6
DIV_FIN
IF ID issue EX

33 Stanford University

Conclusions: Automated synthesis of hardware-

software contracts from RTL is feasible DV DIV
exel exe2
= rtl2puspec!: Automated synthesis of N W IF
uspec models from RTL e o
> Synthesized a pspec model of reue
the open-source RISC-V multi-V- DX
scale processor in 6.84 minutes regfile WB LSU
. . ldiv.
serial prOOf time mem_WB IgEE_é\I/V {0, 1,
. . G .. 63
= TransmitSynth: Automated synthesis Uy °)
of security contracts from RTL via muldiv.
identification of transmit instructions S

> Synthesized 66 paths for DIV [rtl2us ecl i .]
instructions on the open-source 8 HSP \/ 8 TransmitSynth

RISC-V CVA6 processorin96 ~ ——
minutes serial proof time ~ |i&]

thttps://github.com/yaohsiaopid/rtl2uspec
Stanford University

34

Thanks!
yaohsiao@stanford.edu

This presentation and recording belong to the authors.
No distribution is allowed without the authors' permission.

35 Stanford University

mailto:yaohsiao@stanford.edu

