
Introduction

• Diffractive Optical Neural Networks (DONNs): mimicking
the propagation and connectivity properties of FCN.

– Light-speed computation
– Easily scaled and paralleled
– High energy efficiency
– Complex-valued description

• Challenges for implementation :
– Domain knowledge required
– Lack of accelerated physics computation kernels
– Algorithm-hardware miscorrelation gap

• LightRidge: an end-to-end open-source compiler framework
for the design, training , design exploration, and hardware
deployment for DONNs systems.

– Precise physical emulation algorithm w regularization
– GPU-accelerated complex-valued computation kernel
– User-friendly and versatile DSL

Diffractive Optical Neural Networks (DONNs)

LightRidge Compiler

Experimental Results

• Emulation Accuracy Evaluation
– Similar high accuracy regardless of system complexity

• DONNs Confidence Evaluation
– Random uniform noise at detector with 1%, 3%, 5%
– Less accuracy degradation for more complex models

Physical Validation

All-optical RGB Image Classification

Reference

LightRidge: An Open-source Compiler Framework for
Diffractive Optical ML Architectures

Yingjie Li, Ruiyang Chen, Minhan Lou, Berardi Sensale-Rodriguez, Weilu Gao, Cunxi Yu
Electrical and Computer Engineering, University of Utah, Salt Lake City, UtahOSCAR @ ISAC 2022

Input Image Diffractive Layer1 Diffractive Layer2 Diffractive Layer3 Camera

(a)

(b)

z

DiffractionPhase Modulation

.

.

.

.

.

.

.

.

.

.

.

.

Modulated wave

Input wave

(c)

z

DiffractionPhase Modulation

.

.

.

.

.

.

.

.

.

.

.

.

Modulated wave

Input wave
Diffractive layers

Detector plane

Input plane

distanc
e

2

0

543

21

87 9

6

Laser source
& ML tasks

Modelling

Deployment

Training &
Testing

Encode input with light:
lr.utils.data_to_cplex()

Laser profile: lr.laser.GaussBeam

Fully DONN construction:
lr.layers.DiffractLayer(…,'Fresnel’, detector,…)

Training/Testing: lr.train(model,lr,…)

High-performance optical physics kernels:
lr.models.DiffractiveClassifier(…).to(‘cuda’)])

Hardware backend:
SLM Sys
model.to_slm()
3D Print THz Sys
model.to_3d_render()

import lightridge as lr

Structure Compiler Code Blocks System

Loss

Laser

Diffract
Layer

Detector

D
ep

lo
ym

en
t

• Novel training algorithms with complex-valued regularization
– Light intensity captured at detector as loss function
– Seamless integration with SOTA auto-differential engines
– Enable training with iterative SGD optimizations

Emulation Runtime Speedups

LightRidge-CPU results LightRidge-GPU results

LightPipe-CPU [1] results CPU speedups

Dataset Depth Lin et.al 0% 1% 3% 5%

MNIST

D=1 0.670 0.960 0.398 0 0

D=3 0.910 0.978 0.961 0.876 0.661

D=5 0.950 0.979 0.979 0.979 0.977

FMNIST

D=1 0.540 0.874 0.340 0.001 0

D=3 0.830 0.889 0.791 0.518 0.278

D=5 0.870 0.890 0.889 0.886 0.883

Confidence evaluation of DONNs trained with
laser wavelength of 532nm

Input Image Diffractive Layer1 Diffractive Layer2 Diffractive Layer3 Camera

Em
ul

at
ed

 o
ut

pu
t

Ex
pe

rim
en

ta
l m

ea
su

re
m

en
ts

0

1

0

6

1

6

0

7 7

“R” Channel

“G” Channel

“B” Channel

RGB Encoding Layers

Reflection Mirrors

Beam splitters

=“outdoor”

All-optical Image Segmentation

(T2.2.2) Real-time Multi-
task Image Classification

Diffractive Layer

Beam Splitter

Order/sequence of
incoming tasks can be

recognized automatically
in real-time at Detector

(a)

(b)

(a)

(b)

Localization of objective
and objective classification
generation simultaneously(T2.2.1) Real-time CV

Objective Detection

Lowest energy area as class indication (Task 1)

Highest energy area as class indication (Task 2)

(a)

(b)

(c)

(d)

T3.2T3.1

Real-time classification
w auto task recognition

Classification

Localization/
Segmentation

Multi-task Diffractive Layers

Input image Output [9, 18] Our preliminary results

Input Image Target Our results Baseline

(T2.2.2) Real-time Multi-
task Image Classification

Diffractive Layer

Beam Splitter

Order/sequence of
incoming tasks can be

recognized automatically
in real-time at Detector

(a)

(b)

(a)

(b)

Localization of objective
and objective classification
generation simultaneously(T2.2.1) Real-time CV

Objective Detection

Lowest energy area as class indication (Task 1)

Highest energy area as class indication (Task 2)

(a)

(b)

(c)

(d)

T3.2T3.1

Real-time classification
w auto task recognition

Classification

Localization/
Segmentation

Multi-task Diffractive Layers

Input image Output [9, 18] Our preliminary results

Optical Skip Connection

LayerNorm (training only)Reflection Mirror
Input Image

Output Image (Detector) Target

Place 365 Top-1 Top-3 Top-5
LightRidge 0.52 0.73 0.84
Lin et.al. 0.23 0.48 0.67

Optics
kernels CPU GPU Batch

Ops
LoC
(val)

LoC
(train)

LightRidge ✓ ✓ ✓ ✓ 1 1
LightPipe[1] ✓ ✓ ✗ ✗ 1.2× n/a
Customized
Pytorch/TF ✗ ✓ ✓ ✓ 20× 50×

Design Space Exploration of DONNs Architecture

Grid-search results under
!! (e.g., Figure 5a)

Grid-search results under
!" (e.g., Figure 5b)

Grid-search results under
!#

Analytical
DSE Model

Architectural Space
under new ! (e.g., 532nm)

Predicated performance
under new ! (see Figure 5c)

Analytical based DSE flow

• Grid-search based DONN DSE

• Analytical model based DONN DSE
– Polynomial analytical estimator to bypass and transfer

physics-aware domain knowledge between systems
– Gradient boosting regression & MSE loss

LightRidge Code Example
4 class Model(torch.nn.Module):

5 # initial arguments definition for the model

6 def __init__(...)

7 ...

8 self.diffractive_layers_1=l1

9 self.diffractive_layers_2=l2

10 ...

11 self.last_diffraction=layers.DiffractiveLayer(...,

phase_mode = False)

12 self.detector = lr.layers.Detector(...)

13 def forward(self, x):

14 x = self.diffractive_layers_1(x)

15 x = self.diffractive_layers_2(x)

16 ...

17 x = self.last_diffraction(x)

18 output = self.detector(x)

19 return output

20

21 # emulation and training will be executed on Nvidia GPU.

22 model = Model(...).to("cuda")

Listing 2: Model construction and CUDA acceleration of optical
physics emulation examples.

F. Training modules
Here, we introduce the training/optimization modules in

LightRidge by focusing on ML tasks, particularly image classi-
fication problems, which natively supports PyTorch automatic
differentiation (autograd) mechanism. For DONN model,
the input information will be encoded on the laser beam. In
optical domain, light will be described with complex numbers
which involve real part and imaginary part. With the complex
number description, we can get both amplitude and phase
information of the information-carried light beam. In our
framework, inputs will first be converted to complex domain
by lr.utils.data_to_cplex(). At the output/detector
plane, the intensity will be measured as the network output
and compared with the ground truth label in the loss function,
e.g., MSELoss for the loss function. With all components
implemented as differentiable modules, the DONN model is
fully differentiable, such that it can be trained with conventional
automatic differentiation engine, e.g., Adam for optimization.

As a result, in the forward function, the DONNs model
makes its prediction based on the diffraction propagation and
the prediction of the given feature is then made at the detector
plane. In other words, it runs the input data through every
diffraction and phase modulation to make its prediction. During
the backpropagation phase, the DONNs will adjust its phase
modulation parameters proportionate to the error made in the
forward function. Note that the phase modulation parameters
correspond to specific physical parameters (e.g., thickness of
materials) or supplying voltage value on devices (e.g., SLMs
and phase change material). Similarly, this is done by traversing
backward from the output, collecting the derivatives of the error
with respect to the parameters of diffraction functions (i.e.,
FFT, IFFT, and complex-domain matrix multiplication), and
optimizing the parameters using gradient descent algorithms.

G. Complex-domain Regularization
In our implementation, considering the physics in optics,

the DONN system is described and emulated with complex
numbers. According to [21] and Equation 10, the training for
DONN system is more phase modulation dominated and the

intensity at the end of diffraction will decrease exponentially
as the number of diffractive layers increases, which means
a regularization between amplitude and phase is required to
avoid gradient vanishing and explosion in training process.
Thus, we introduce a novel regularization factor � in the
forward function described in Equation 10 to improve the
training efficiency, which can flexibly change the gradient
scales between amplitude and phase modulations. Specifically,
� is applied to amplitude vector A in Equation 9.

Since in DONN system, the intensity of the input light
decreases exponentially as diffractive layers increase, the weight
of amplitude modulation in forward and backward propagation
are expected to decrease exponentially, as the number of layers
increases. Thus, the optimal value for the algorithmic parameter
� needs to be explored for different DONNs architectures.
Empirically, � should be �1, i.e., compensating the loss for
the intensity after propagating through each diffractive layer.

H. Hardware deployment and visualization
Users can view the phase modulation for each diffractive

layer by executing model.phase_view and view the prop-
agation process by executing model.prop_view. More
importantly, the proposed compiler directly supports various
popular hardware deployment w.r.t to specific laser source.
Specifically, LightRidge supports different fabrication/deploy-
ment methods, e.g., SLMs for laser in visible range and
3D printed phase mask for THz systems. Our framework
can directly interface with these two types of hardware
backends, e.g., model.to_slm for EXULUS-HD1 SLMs
and model.to_3d_render for FormLab 3D printers.

V. VALIDATION OF LIGHTRIDGE PHYSICS ENGINES

As one of the most important objectives of LightRidge
compiler is to bridge the gaps between high-level algorithm
presentation with low-level physics, verifying the correctness of
the physics modeling w.r.t physical optical systems. Specifically,
in this section, we perform a sampling-based compiler-physics
validation, with the 1) cascaded two-layer diffraction models
emulated using LightRidge using CUDA support, and 2)
physical two-layer diffraction experimental system (Figure 6)
as the verification bodies.

Input sampling: Given a cascaded two-layer diffractive
model, let the f be the function of the feed-forward diffraction
propagation, f = diffract(diffract(x, SLM0), SLM1). While
our compiler will take in arbitrary input (x) and run the
inference with arbitrary phase modulation applied (e.g., SLM0).
Thus, three inputs are sampled in this validation process,
i.e., x, SLM0, SLM1. Compiler-level measurement: After the
inference with customized input and phase modulation, we will
get the intensity distribution over the detector, which will be
captured by the lr.detector module. Optical system and
parameters in compiler: The wavelength of the laser source is
532nm. Each diffraction unit has the size of 36um ⇥ 36um. For
each diffractive layer, we have 40000 diffraction units which
result in a matrix with the size of 200 ⇥ 200. We employ
SLMs as the diffractive layers, where the phase modulation

8

[1] Lightpipes (CPU-only): Software for education in coherent
optics,” https://github.com/opticspy/lightpipes .

[2] Lin, Xing, et al. "All-optical machine learning using
diffractive deep neural networks." Science 361.6406
(2018): 1004-1008.

[3] Li, Yingjie, et al. "Real-time multi-task diffractive deep
neural networks via hardware-software co-
design." Nature Scientific reports11.1 (2021): 1-9.

(d) ! = 532nm (Experimental)

1.0

0.0

(c) ! = 532nm (Predicted)

(a) ! = 632nm (b) ! = 432nm

An
al

yt
ic

al
 M

od
el

Accuracy
1.0

0.0

DSE of DONNs w.r.t diffractive unit size, and diffraction distance

𝟑𝟑×

𝟏𝟑𝟒×Low-level
Modeling Description Model-level APIs

Lase source &
Profiles

Encode & transfer
information in complex value lr.laser

Light Diffraction

• Connect neurons
• Non-trainable
• Mathematical

approximations
• FFT involved

lr.layers

Phase
Modulation

• Modify light waves
• Targeted trainable

• Matrix multiplication
• Inverse FFT involved

lr.layers

Measurement Capture light intensity for
predication lr.layers.detector

Training Train, optimize, accelerate
the system lr.train.utils

Hardware
Deployment

• Coherent laser source
• Spatial Light Modulator

• CMOS camera

lr.weight_dump
lr.to_system

https://github.com/opticspy/lightpipes

