

LightRidge: An Open-source Compiler Framework for **Diffractive Optical ML Architectures**

OSCAR @ ISAC 2022

Introduction

- Diffractive Optical Neural Networks (DONNs): mimicking the propagation and connectivity properties of FCN.
 - Light-speed computation
 - Easily scaled and paralleled
 - High energy efficiency
 - Complex-valued description
- **Challenges** for implementation :
 - Domain knowledge required
 - Lack of accelerated physics computation kernels Algorithm-hardware miscorrelation gap

	Optics kernels	CPU	GPU	Batch Ops	LoC (val)	LoC (train)
LightRidge	\checkmark	\checkmark	\checkmark	\checkmark	1	1
LightPipe[1]	\checkmark	\checkmark	Х	Х	1.2×	n/a
Customized Pytorch/TF	Х	\checkmark	\checkmark	\checkmark	20×	50×

- **LightRidge**: an end-to-end open-source compiler framework for the design, training, design exploration, and hardware deployment for DONNs systems.
 - Precise physical emulation algorithm w regularization
 - GPU-accelerated complex-valued computation kernel User-friendly and versatile DSL

Low-level Model-level APIs Description Modeling Encode & transfer Lase source & Ir.laser **Profiles** information in complex value Connect neurons Non-trainable Ir.layers Light Diffraction Mathematical approximations FFT involved Modify light waves Phase Targeted trainable Ir.layers **Modulation** Matrix multiplication • Inverse FFT involved Capture light intensity for Ir.layers.detector Measurement predication Train, optimize, accelerate Ir.train.utils Training the system Coherent laser source Ir.weight_dump Hardware Spatial Light Modulator Deployment lr.to_system CMOS camera

Yingjie Li, Ruiyang Chen, Minhan Lou, Berardi Sensale-Rodriguez, Weilu Gao, Cunxi Yu Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah

taset	Depth	Lin et.al	0%	1%	3%	5%
NIST	D=1	0.670	0.960	0.398	0	0
	D=3	0.910	0.978	0.961	0.876	0.661
	D=5	0.950	0.979	0.979	0.979	0.977
INIST	D=1	0.540	0.874	0.340	0.001	0
	D=3	0.830	0.889	0.791	0.518	0.278
	D=5	0.870	0.890	0.889	0.886	0.883

