
System-Level Computer Architecture
Research with Open ESP

Joseph Zuckerman
Davide Giri, Paolo Mantovani

Maico Cassel Dos Santos, Kuan-Lin Chiu, Giuseppe Di Guglielmo,
Guy Eichler, Jihye Kwon, Luca Piccolboni, Biruk Seoyum, Gabriele Tombesi

Luca P. Carloni

The Age of Heterogeneous Computing

• SoCs are increasingly heterogeneous
• CPUs, GPUs, accelerators, I/O peripherals, sensors…
• Across computing domains

• Heterogeneity increases engineering effort [1]

• Capabilities of new generations limited by team size
• Biggest challenges are in system-integration

[1] Khailany, DAC ‘18 2

Open-Source Hardware

• Gaining momentum in academia,
industry, government programs, etc.
• Most contributions focus on the

development of SoC components

• Key challenge: How to realize a
complete SoC for a target domain
with heterogeneous, OSH components
designed by different teams using
different tools?

3

The Concept of Platform
• Innovation in SoC architectures and their design methodologies is

needed to promote design reuse and collaboration

• Platform = architecture + methodology
• An SoC architecture that simplifies the integration of many components enables

design reuse
• An SoC methodology that allows designers to choose their preferred languages

and tools enables collaboration

• Together, maximizes the potential of open-source hardware
• Mitigates engineering challenges and drives innovation [2]

[2] Gupta, IEEE Computer ‘17 4

ESP : An Open-Source Platform for SoC Design

www.esp.cs.columbia.edu

Collaborators and Users:

Outline

The ESP Architecture

The ESP Methodology

Computer Architecture Research with ESP

SoC HW
Integration

SoC Configuration

ASIC
Design

FPGA Prototyping

SoC
SW Build

SW Library

third-party
processor cores

third-party
accelerators

accelerators

HW IP Library

third-party accelerators’ SW

Linux apps
bare-metal apps
device drivers

FPGA ASIC

SoC Generation

6

• Multi-Plane NoC

• Many-Accelerator

• Distributed Memory

The ESP architecture implements a
distributed system, which is scalable,

modular and heterogeneous,
giving processors and accelerators

similar weight in the SoC [3]

ESP Architecture

[3] Mantovani, ICCAD ‘20 7

• Processor off-the-shelf
• RISC-V CVA6-Ariane (64 bit)
• SPARC V8 Leon3 (32 bit)
• RISC-V IBEX (32 bit)
• L1 private cache

• L2 private cache
• Configurable size
• MESI protocol

• IO/IRQ channel
• Un-cached
• Accelerator config. registers,

interrupts, flush, UART, …

ESP Architecture: Processor Tile

8

•External Memory Channel

• LLC and directory partition
• Configurable size
• Extended MESI protocol
• Supports coherent-DMA

for accelerators

•DMA channels

• IO/IRQ channel

ESP Architecture: Memory Tile

9

•Accelerator Socket
w/ Platform Services

• Direct-memory-access

• Coherence

• Transparent address
translation

• User-defined registers

ESP Architecture: Accelerator Tile

10

ESP Accelerator Socket

11

ke
rn

el

m
od

e

Linux

ESP core

ESP accelerator driver

us
er

m

od
e

ESP alloc

ESP Library

Application

•ESP accelerator API [4]
oGeneration of device driver

and unit-test application

oSeamless shared memory

/*
* Example of existing C application with ESP
* accelerators that replace software kernels 2, 3,
* and 5. The cfg_k# contains buffer and the
* accelerator configuration.
*/
{
int *buffer = esp_alloc(size);

for (...) {

kernel_1(buffer,...); /* existing software */

esp_run(cfg_k2); /* run accelerator(s) */
esp_run(cfg_k3);

kernel_4(buffer,...); /* existing software */

esp_run(cfg_k5);
}

validate(buffer); /* existing checks */

esp_free(); /* memory free */
}

ESP Software Socket

[4] Giri, DATE ‘20 12

Miscellaneous Tile Memory Tile

Accelerator tile Processor Tile
DMA

Reconfigurable coherence
Point-to-point

ESP or AXI interface
DVFS controller

Coherence

I/O and un-cached memory

Distributed interrupts

DVFS controller

Debug interface

Performance counters access

Coherent DMA

Shared peripherals (UART, ETH, …)

Independent DDR Channel

LLC Slice

DMA Handler

ESP Platform Services

13

Outline

The ESP Architecture

The ESP Methodology

Computer Architecture Research with ESP

SoC HW
Integration

SoC Configuration

ASIC
Design

FPGA Prototyping

SoC
SW Build

SW Library

third-party
processor cores

third-party
accelerators

accelerators

HW IP Library

third-party accelerators’ SW

Linux apps
bare-metal apps
device drivers

FPGA ASIC

SoC Generation

14

The ESP Vision: Domain Experts Can Design SoCs

• Embraces the design of new
accelerators from multiple levels
of abstraction [4]

• Enables the integration of
existing accelerators with the
third party flow [5]

• Can be used to produce
complex FPGA prototypes [6]

or real ASIC implementations [7]

[4] Giri, DATE ‘20 [6] Mantovani, DAC ‘16
[5] Giri, IEEE Micro ‘18 [7] Jia, ESSCIRC ‘22 15

interactive
automated

manual
manual (opt.)

Generate accelerator

Test behavior

Generate RTL

Test RTL

Optimize RTL

Specialize accelerator
* this step is automated
* for ML applications

Accelerator Flow

A
pp

lic
at

io
n

D
ev

el
op

er
s

H
ar

dw
ar

e
D

es
ig

ne
rs

HLS
Design
Flows

RTL
Design
Flows

…

…

…accelerator

accelerator

accelerator

Compile bare-metal

Simulate system

Implement for FGPA

Generate sockets

Configure RISC-V SoC

SoC Flow
…

…

…accelerator

accelerator

accelerator

Compile Linux

Deploy prototype

Configure runtime

**

ESP Methodology In Practice

16

Developers focus on the high-level specification, decoupled from
memory access, system communication, hardware/software interface

A
pp

lic
at

io
n

D
ev

el
op

er
s

H
ar

dw
ar

e
D

es
ig

ne
rs

HLS
Design
Flows

RTL
Design
Flows

Performance

A
re

a
/ P

ow
er

3

2

1 High-Level Synthesis

Code Transformation

Ver. 1

Ver. 2

Ver. 3

RTL
Design Space

Programmer View
Design Space

…
…
accelerator

accelerator

accelerator

ESP Accelerator Flow

17

Outline

The ESP Architecture

The ESP Methodology

Computer Architecture Research with ESP

SoC HW
Integration

SoC Configuration

ASIC
Design

FPGA Prototyping

SoC
SW Build

SW Library

third-party
processor cores

third-party
accelerators

accelerators

HW IP Library

third-party accelerators’ SW

Linux apps
bare-metal apps
device drivers

FPGA ASIC

SoC Generation

18

Retrospective: Accelerators and Coherence

• Interactions with the memory
hierarchy is a critical aspect of
integration of accelerators in SoCs
• ESP: shared-memory model
• Accelerators and processors address the

same address space
• At what level of the cache hierarchy

should the accelerators be integrated?

• Several different coherence modes
for accelerators

Accelerator has its own private cache

Accelerator performs DMA to LLC

Accelerator bypasses entire cache hierarchy
19

ESP’s Coherence Protocol

• NoC-Based Support of
Heterogeneous Cache-Coherence
Models for Accelerators.
• [8] Giri, NOCS ‘18

• Adapted a standard MESI
directory protocol to work over a
NoC and support 3 accelerator
coherence modes
• LLC can handle DMA requests
• Addition of a Valid state

• Private L2 can be instantiated in
processor and accelerator tiles 20

Autoencoder Cholesky Conv�2D FFT GEMM MLP MRI�Q NVDLA Night�vision SPMV Sort Viterbi

S
m

all
M

edium
Large

non�c
oh�d

ma

llc�
coh�d

ma

coh�d
ma

full�c
oh

non�c
oh�d

ma

llc�
coh�d

ma

coh�d
ma

full�c
oh

non�c
oh�d

ma

llc�
coh�d

ma

coh�d
ma

full�c
oh

non�c
oh�d

ma

llc�
coh�d

ma

coh�d
ma

full�c
oh

non�c
oh�d

ma

llc�
coh�d

ma

coh�d
ma

full�c
oh

non�c
oh�d

ma

llc�
coh�d

ma

coh�d
ma

full�c
oh

non�c
oh�d

ma

llc�
coh�d

ma

coh�d
ma

full�c
oh

non�c
oh�d

ma

llc�
coh�d

ma

coh�d
ma

full�c
oh

non�c
oh�d

ma

llc�
coh�d

ma

coh�d
ma

full�c
oh

non�c
oh�d

ma

llc�
coh�d

ma

coh�d
ma

full�c
oh

non�c
oh�d

ma

llc�
coh�d

ma

coh�d
ma

full�c
oh

non�c
oh�d

ma

llc�
coh�d

ma

coh�d
ma

full�c
oh

0

1

2

0

1

2

0

1

2

Coherence Mode

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

execution time off�chip memory accesses

5.3 4.1 5.0

7.9 6.6 3.2 3.4 7.1 6.2

Performance of Accelerator Coherence Modes
• Accelerators and Coherence: an SoC Perspective

• [9] Giri, IEEE Micro ’18
• No best coherence mode!

• Depends on workload size, accelerator characteristics, dynamic system contention

Updated results from Zuckerman, MICRO ‘21

Different winners for S & L sizes

8x slowdown for full coherence

Different winners across accelerators

21

Reconfigurable Coherence for Accelerators

• Runtime Reconfigurable Memory
Hierarchy in Embedded Scalable
Platforms
• [10] Giri, ASPDAC ’18

• Enabled runtime selection of
accelerator’s coherence mode
• Hand-tuned algorithm for selection

at invocation time
• Evaluation on synthetic application

reduces:
• execution time by 40%
• off-chip memory accesses by 30%

22

Reinforcement Learning for Coherence Selection

• Cohmeleon: Learning-Based Orchestration of
Accelerator Coherence in Heterogeneous SoCs
• [11] Zuckerman, MICRO ’21

• Hand-designed algorithm depends on many
factors and requires tuning for target
architecture
• Reinforcement-learning solution trains online

during normal SoC operation
• Continuously updates itself by observing

system status and measuring performance
• New ESP performance monitoring system and API

Given (A, m),

CPU CPU
Config.
register

Acc. Acc.
System
statusRL

1) State 2) Action

RL (Reinforcement learning) module
Action

State

Q
-t

ab
le

. . .

..
.

..
.

..
.

..
.

. . .

. . .

...

3) Reward

SoC

sense the state Get an action
Update the
Q-value

...

DRAM DRAM m

A

...

...LLC partition LLC partition

mem ctrl mem ctrlAccess
monitor

Access
monitor

Config.
register

Perf.
monitor

Perf.
monitor

23

Evaluating Cohmeleon
• 7 different many-accelerator SoCs on FPGA

• Use real accelerators to target particular domains
• Avg speedup of 38% with a 66% reduction of off-chip memory

accesses when compared to design-time solutions.

24

In Summary: ESP for Computer Architecture Research

• ESP enables studying contributions in the
context of complete systems
• Modular architecture eases integration of existing IP
• Flexible methodology for developing new

components
• Growing library of accelerators from various

domains
• neural network inference, collaborative

autonomous driving, computer vision, signal
processing, brain-computer interfaces,
cryptography

• Rapid prototyping on FPGA
• Hardware monitoring system and accompanying API

for performance evaluation

•We invite you to use ESP for your projects
and to contribute to ESP!

www.esp.cs.columbia.edu

25

Thank you from the ESP team!
sld.cs.columbia.edu esp.cs.columbia.edu sld-columbia/espColumbiaSld c/ESP-platform

System-Level Computer Architecture Research with Open ESP
J. Zuckerman, D. Giri, P. Mantovani, M. Cassel Dos Santos, K. Chiu, G. Di Guglielmo,

G. Eichler, J. Kwon, L. Piccolboni, B. Seoyum, G. Tombesi, L.P. Carloni

OSCAR 2022

Image Sources:
https://chipsalliance.org/
https://github.com/nvdla
https://www.openhwgroup.org/
https://parallel.princeton.edu/openpiton/
https://pulp-platform.org/
https://riscv.org/
https://www.ibm.com/
https://www.seas.harvard.edu/

https://www.seas.harvard.edu/
https://illinois.edu/
https://www.princeton.edu/
https://www.fnal.gov/
https://www.pnnl.gov/
https://www.polimi.it/
https://www.siemens.com/
https://gf.com/
https://www.gatech.edu/

https://sld.cs.columbia.edu/
https://www.esp.cs.columbia.edu/
https://github.com/sld-columbia/esp
https://twitter.com/ColumbiaSld
https://www.youtube.com/c/ESP-platform
https://chipsalliance.org/
https://github.com/nvdla
https://www.openhwgroup.org/
https://parallel.princeton.edu/openpiton/
https://pulp-platform.org/
https://riscv.org/
https://www.ibm.com/
https://www.seas.harvard.edu/
https://www.seas.harvard.edu/
https://illinois.edu/
https://www.princeton.edu/
https://www.fnal.gov/
https://www.pnnl.gov/
https://www.polimi.it/
https://www.siemens.com/
https://gf.com/
https://www.gatech.edu/

