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The Age of Heterogeneous Computing

• SoCs are increasingly heterogeneous
• CPUs, GPUs, accelerators, I/O peripherals, sensors…
• Across computing domains

• Heterogeneity increases engineering effort [1]

• Capabilities of new generations limited by team size
• Biggest challenges are in system-integration

[1] Khailany, DAC ‘18 2



Open-Source Hardware

• Gaining momentum in academia, 
industry, government programs, etc.
• Most contributions focus on the 

development of SoC components

• Key challenge: How to realize a 
complete SoC for a target domain 
with heterogeneous, OSH components 
designed by different teams using 
different tools?
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The Concept of Platform
• Innovation in SoC architectures and their design methodologies is 

needed to promote design reuse and collaboration

• Platform = architecture + methodology
• An SoC architecture that simplifies the integration of many components enables 

design reuse 
• An SoC methodology that allows designers to choose their preferred languages 

and tools enables collaboration

• Together, maximizes the potential of open-source hardware 
• Mitigates engineering challenges and drives innovation [2]

[2] Gupta, IEEE Computer ‘17 4



ESP : An Open-Source Platform for SoC Design

www.esp.cs.columbia.edu

Collaborators and Users:
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• Multi-Plane NoC

• Many-Accelerator

• Distributed Memory

The ESP architecture implements a 
distributed system, which is scalable, 

modular and heterogeneous,
giving processors and accelerators 

similar weight in the SoC [3]

ESP Architecture

[3] Mantovani, ICCAD ‘20 7



• Processor off-the-shelf 
• RISC-V CVA6-Ariane (64 bit)
• SPARC V8 Leon3 (32 bit)
• RISC-V IBEX (32 bit)
• L1 private cache

• L2 private cache
• Configurable size
• MESI protocol

• IO/IRQ channel
• Un-cached
• Accelerator config. registers, 

interrupts, flush, UART, …

ESP Architecture: Processor Tile
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•External Memory Channel

• LLC and directory partition
• Configurable size
• Extended MESI protocol 
• Supports coherent-DMA 

for accelerators

•DMA channels

• IO/IRQ channel

ESP Architecture: Memory Tile
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•Accelerator Socket 
w/ Platform Services

• Direct-memory-access

• Coherence

• Transparent address 
translation

• User-defined registers

ESP Architecture: Accelerator Tile
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ESP Accelerator Socket
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•ESP accelerator API [4]
oGeneration of device driver 

and unit-test application

oSeamless shared memory

/*
* Example of existing C application with ESP 
* accelerators that replace software kernels 2, 3, 
* and 5. The cfg_k# contains buffer and the
* accelerator configuration. 
*/
{
int *buffer = esp_alloc(size);

for (...) {

kernel_1(buffer,...); /* existing software  */

esp_run(cfg_k2);      /* run accelerator(s) */
esp_run(cfg_k3);

kernel_4(buffer,...); /* existing software  */

esp_run(cfg_k5);
}

validate(buffer);       /* existing checks    */

esp_free();          /* memory free        */
}

ESP Software Socket

[4] Giri, DATE ‘20 12



Miscellaneous Tile Memory Tile

Accelerator tile Processor Tile
DMA

Reconfigurable coherence
Point-to-point

ESP or AXI interface
DVFS controller

Coherence

I/O and un-cached memory

Distributed interrupts

DVFS controller

Debug interface

Performance counters access

Coherent DMA

Shared peripherals (UART, ETH, …)

Independent DDR Channel

LLC Slice

DMA Handler

ESP Platform Services
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The ESP Vision: Domain Experts Can Design SoCs

• Embraces the design of new 
accelerators from multiple levels 
of abstraction [4]

• Enables the integration of 
existing accelerators with the 
third party flow [5]

• Can be used to produce 
complex FPGA prototypes [6] 

or real ASIC implementations [7]

[4] Giri, DATE ‘20 [6] Mantovani, DAC ‘16
[5] Giri, IEEE Micro ‘18 [7] Jia, ESSCIRC ‘22 15
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Developers focus on the high-level specification, decoupled from
memory access, system communication, hardware/software interface
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Retrospective: Accelerators and Coherence

• Interactions with the memory 
hierarchy is a critical aspect of 
integration of accelerators in SoCs
• ESP: shared-memory model
• Accelerators and processors address the 

same address space
• At what level of the cache hierarchy 

should the accelerators be integrated?

• Several different coherence modes 
for accelerators

Accelerator has its own private cache

Accelerator performs DMA to LLC

Accelerator bypasses entire cache hierarchy
19



ESP’s Coherence Protocol

• NoC-Based Support of  
Heterogeneous Cache-Coherence 
Models for Accelerators.
• [8] Giri, NOCS ‘18

• Adapted a standard MESI 
directory protocol to work over a 
NoC and support 3 accelerator 
coherence modes
• LLC can handle DMA requests 
• Addition of a Valid state

• Private L2 can be instantiated in 
processor and accelerator tiles 20



Autoencoder Cholesky Conv�2D FFT GEMM MLP MRI�Q NVDLA Night�vision SPMV Sort Viterbi

S
m

all
M

edium
Large

non�c
oh�d

ma

llc�
coh�d

ma

coh�d
ma

full�c
oh

non�c
oh�d

ma

llc�
coh�d

ma

coh�d
ma

full�c
oh

non�c
oh�d

ma

llc�
coh�d

ma

coh�d
ma

full�c
oh

non�c
oh�d

ma

llc�
coh�d

ma

coh�d
ma

full�c
oh

non�c
oh�d

ma

llc�
coh�d

ma

coh�d
ma

full�c
oh

non�c
oh�d

ma

llc�
coh�d

ma

coh�d
ma

full�c
oh

non�c
oh�d

ma

llc�
coh�d

ma

coh�d
ma

full�c
oh

non�c
oh�d

ma

llc�
coh�d

ma

coh�d
ma

full�c
oh

non�c
oh�d

ma

llc�
coh�d

ma

coh�d
ma

full�c
oh

non�c
oh�d

ma

llc�
coh�d

ma

coh�d
ma

full�c
oh

non�c
oh�d

ma

llc�
coh�d

ma

coh�d
ma

full�c
oh

non�c
oh�d

ma

llc�
coh�d

ma

coh�d
ma

full�c
oh

0

1

2

0

1

2

0

1

2

Coherence Mode

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

execution time off�chip memory accesses

5.3 4.1 5.0

7.9 6.6 3.2 3.4 7.1 6.2

Performance of Accelerator Coherence Modes
• Accelerators and Coherence: an SoC Perspective

• [9] Giri, IEEE Micro ’18
• No best coherence mode!

• Depends on workload size, accelerator characteristics, dynamic system contention 

Updated results from Zuckerman, MICRO ‘21

Different winners for S & L sizes

8x slowdown for full coherence

Different winners across accelerators

21



Reconfigurable Coherence for Accelerators

• Runtime Reconfigurable Memory 
Hierarchy in Embedded Scalable 
Platforms
• [10] Giri, ASPDAC ’18

• Enabled runtime selection of 
accelerator’s coherence mode
• Hand-tuned algorithm for selection 

at invocation time
• Evaluation on synthetic application 

reduces:
• execution time by 40%
• off-chip memory accesses by 30%

22



Reinforcement Learning for Coherence Selection

• Cohmeleon: Learning-Based Orchestration of  
Accelerator Coherence in Heterogeneous SoCs
• [11] Zuckerman, MICRO ’21

• Hand-designed algorithm depends on many 
factors and requires tuning for target 
architecture
• Reinforcement-learning solution trains online 

during normal SoC operation
• Continuously updates itself by observing 

system status and measuring performance
• New ESP performance monitoring system and API
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Evaluating Cohmeleon
• 7 different many-accelerator SoCs on FPGA

• Use real accelerators to target particular domains
• Avg speedup of 38% with a 66% reduction of off-chip memory 

accesses when compared to design-time solutions. 
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In Summary: ESP for Computer Architecture Research

• ESP enables studying contributions in the 
context of complete systems
• Modular architecture eases integration of existing IP
• Flexible methodology for developing new 

components
• Growing library of accelerators from various 

domains
• neural network inference, collaborative 

autonomous driving, computer vision, signal 
processing, brain-computer interfaces, 
cryptography

• Rapid prototyping on FPGA
• Hardware monitoring system and accompanying API 

for performance evaluation

•We invite you to use ESP for your projects 
and to contribute to ESP!

www.esp.cs.columbia.edu
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Thank you from the ESP team!
sld.cs.columbia.edu esp.cs.columbia.edu sld-columbia/espColumbiaSld c/ESP-platform
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